Author: Soby, L.     [Søby, L.]
Paper Title Page
MOPPR042 Characterization Tests of a Stripline Beam Position Monitor for the CLIC Drive Beam 873
 
  • A. Benot-Morell, A. Faus-Golfe, J.J. García-Garrigós
    IFIC, Valencia, Spain
  • A. Benot-Morell, L. Søby
    CERN, Geneva, Switzerland
  • J.M. Nappa, J. Tassan-Viol, S. Vilalte
    IN2P3-LAPP, Annecy-le-Vieux, France
  • S.R. Smith
    SLAC, Menlo Park, California, USA
 
  Funding: FPA2010-21456-C02-01, SEIC-2010-00028
A prototype of a stripline Beam Position Monitor (BPM) with its associated readout electronics has been developed at CERN in collaboration with SLAC, LAPP and IFIC. In this paper, the design and simulations of the BPM with the analog readout chain and the BPM test bench are described, and the results of the first characterization tests are presented. The position resolution and accuracy parameters are expected to be below 2μm and 20μm respectively for a beam with a bunching frequency of 12GHz, an average current of 101A and a machine repetition rate of 50Hz.
 
 
MOPPR057 Development of a Cavity Beam Position Monitor for CLIC 915
 
  • F.J. Cullinan, S.T. Boogert, N.Y. Joshi, A. Lyapin
    JAI, Egham, Surrey, United Kingdom
  • E. Calvo, N. Chritin, F. Guillot-Vignot, T. Lefèvre, L. Søby
    CERN, Geneva, Switzerland
  • A. Lunin, M. Wendt, V.P. Yakovlev
    Fermilab, Batavia, USA
  • S.R. Smith
    SLAC, Menlo Park, California, USA
 
  The Compact Linear Collider (CLIC) project presents many challenges to its subsystems and the beam diagnostics in particular must perform beyond current limitations. The requirements for the CLIC main beam position monitors foresee a spacial resolution of 50 nm while delivering a 10 ns temporal resolution within the bunch train. We discuss the design of the microwave cavity pick-up and associated electronics, bench top tests with the first prototype cavity, as well as some of the machine-specific integration and operational issues.