Author: Smith, S.L.
Paper Title Page
MOEPPB003 Status of the PRISM FFAG Design for the Next Generation Muon-to-Electron Conversion Experiment 79
 
  • J. Pasternak, A. Alekou, M. Aslaninejad, R. Chudzinski, L.J. Jenner, A. Kurup, Y. Shi, Y. Uchida
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • R. Appleby, H.L. Owen
    UMAN, Manchester, United Kingdom
  • R.J. Barlow
    University of Huddersfield, Huddersfield, United Kingdom
  • K.M. Hock, B.D. Muratori
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • D.J. Kelliher, S. Machida, C.R. Prior
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • Y. Kuno, A. Sato
    Osaka University, Osaka, Japan
  • J.-B. Lagrange, Y. Mori
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • M. Lancaster
    UCL, London, United Kingdom
  • C. Ohmori
    KEK, Tokai, Ibaraki, Japan
  • T. Planche
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H. Witte
    BNL, Upton, Long Island, New York, USA
  • T. Yokoi
    JAI, Oxford, United Kingdom
 
  The PRISM Task Force continues to study high intensity and high quality muon beams needed for next generation lepton flavor violation experiments. In the PRISM case such beams have been proposed to be produced by sending a short proton pulse to a pion production target, capturing the pions and performing RF phase rotation on the resulting muon beam in an FFAG ring. This paper summarizes the current status of the PRISM design obtained by the Task Force. In particular various designs for the PRISM FFAG ring are discussed and their performance compared to the baseline one, the injection/extraction systems and matching to the solenoid channels upstream and downstream of the FFAG ring are presented. The feasibility of the construction of the PRISM system is discussed.  
 
TUOBB01 A European Proposal for the Compton Gamma-ray Source of ELI-NP 1086
 
  • L. Serafini, I. Boscolo, F. Broggi, V. Petrillo
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • O. Adriani, G. Graziani, G. Passaleva
    INFN-FI, Sesto Fiorentino, Italy
  • S. Albergo, A. Tricomi
    INFN-CT, Catania, Italy
  • D. Alesini, M.P. Anania, A. Bacci, R. Bedogni, M. Bellaveglia, C. Biscari, R. Boni, M. Boscolo, M. Castellano, E. Chiadroni, A. Clozza, E. Di Pasquale, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, A. Gallo, G. Gatti, A. Ghigo, F. Marcellini, C. Maroli, G. Mazzitelli, E. Pace, L. Pellegrino, R. Ricci, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, P. Tomassini, C. Vaccarezza, S. Vescovi, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • D. Angal-Kalinin, J.A. Clarke, B.D. Fell, A.R. Goulden, J.D. Herbert, S.P. Jamison, P.A. McIntosh, R.J. Smith, S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Antici, M. Coppola, L. Lancia, A. Mostacci, L. Palumbo
    URLS, Rome, Italy
  • N. Bliss, B.G. Martlew
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Cardarelli, M. Gambaccini
    INFN-Ferrara, Ferrara, Italy
  • L. Catani, A. Cianchi
    INFN-Roma II, Roma, Italy
  • I. Chaikovska, O. Dadoun, A. Stocchi, A. Variola, Z.F. Zomer
    LAL, Orsay, France
  • C. De Martinis
    INFN/LASA, Segrate (MI), Italy
  • F. Druon, P. Fichot
    ILE, Palaiseau Cedex, France
  • E. Iarocci
    University of Rome "La Sapienza", Rome, Italy
  • M. Migliorati
    Rome University La Sapienza, Roma, Italy
  • A.-S. Müller
    IN2P3, Paris, France
  • V. Nardone
    Università di Roma I La Sapienza, Roma, Italy
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • M. Veltri
    Uniurb, Urbino (PU), Italy
 
  A European proposal is under preparation for the Compton gamma-ray Source of ELI-NP. In the Romanian pillar of ELI (the European Extreme Light Infrastructure) an advanced gamma-ray beam is foreseen, coupled to two 10 PW laser systems. The photons will be generated by Compton back-scattering in the collision between a high quality electron beam and a high power laser. A European collaboration formed by INFN, Univ. of Roma La Sapienza, Orsay-LAL of IN2P3, Univ. de Paris Sud XI and ASTeC at Daresbury, is preparing a TDR exploring the feasibility of a machine expected to achieve the Gamma-ray beam specifications: energy tunable between 1 and 20 MeV, narrow bandwidth (0.3%) and high spectral density, 104 photons/sec/eV. We will describe the lay-out of the 720 MeV RF Linac and the collision laser with the associated optical cavity, as well as the optimized beam dynamics to achieve maximum phase space density at the collision, taking into account beam loading and beam break-up due to the acceleration of long bunch trains. The predicted gamma-ray spectra will be evaluated as the gamma photons collimators background. An option for electron bunches recirculation will also be illustrated.  
slides icon Slides TUOBB01 [5.099 MB]  
 
THPPR044 A New Electron Beam Test Facility (EBTF) at Daresbury Laboratory for Industrial Accelerator System Development 4074
 
  • P.A. McIntosh, D. Angal-Kalinin, S.R. Buckley, J.A. Clarke, A.R. Goulden, C. Hill, S.P. Jamison, J.K. Jones, A. Kalinin, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, T.T. Ng, B.J.A. Shepherd, R.J. Smith, S.L. Smith, N. Thompson, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • N. Bliss, G.P. Diakun, A. Gleeson, T.J. Jones, B.G. Martlew, A.J. Moss, L. Nicholson, M.D. Roper, C.J. White
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Recent UK government funding has facilitated the implementation of a unique accelerator test facility which can provide enabling infrastructures targeted for the development and testing of novel and compact accelerator technologies, specifically through partnership with industry and aimed at addressing applications for medicine, health, security, energy and industrial processing. The infrastructure provision on the Daresbury Science and Innovation Campus (DSIC) will permit research into areas of accelerator technologies which have the potential to revolutionise the cost, compactness and efficiency of such systems. The main element of the infrastructure will be a high performance and flexible electron beam injector facility, feeding customised state-of-the-art testing enclosures and associated support infrastructure. The facility operating parameters and implementation status will be described, along with primary areas of commercialised technology development opportunities.