Author: Smirnov, A.V.
Paper Title Page
MOPPC060 Investigations into Beam Life Time in Low Energy Storage Rings 271
  • A.I. Papash, A.V. Smirnov
    MPI-K, Heidelberg, Germany
  • A.I. Papash
    JINR, Dubna, Moscow Region, Russia
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  Funding: Work supported by the Helmholtz Association of National Research Centers and GSI under contract VH-NG-328.
In low energy storage rings, beam life time critically depends on the residual gas pressure, scattering effects caused by in-ring experiments and the available machine acceptance. A comprehensive simulation study into these effects has been realized with a focus on the TSR storage ring in Heidelberg and the electrostatic rings ELISA, the AD recycler and the ultra-low energy storage ring (USR). This was done by using the computer code BETACOOL in combination with the OPERA-3D and MAD-X programs. In this contribution, the results from these studies are presented and compared to available experimental data. Based on these simulations, criteria for stable ring operation are then presented.
MOPPD002 Ultra-low Energy Storage Ring at FLAIR 367
  • C.P. Welsch, D. Newton, M.R.F. Siggel-King
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • O.E. Gorda, O. Karamyshev, G.A. Karamysheva, M. Panniello, A.I. Papash, A.V. Smirnov
    MPI-K, Heidelberg, Germany
  • J. Harasimowicz, M. Putignano, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  Funding: The support of the HGF and GSI under contract VH-NG-328, the EU under contract PITN-GA-2008-215080, the Max Planck Institute for Nuclear Physics and the STFC Grant ST/G008248/1 is acknowledged.
The Ultra-low energy electrostatic Storage Ring (USR) at the future Facility for Low-energy Antiproton and Ion Research (FLAIR) will provide cooled beams of antiprotons in the energy range between 300 keV down to 20 keV. Based on the original design concept developed in 2005, the USR has been completely redesigned over the past few years. The ring structure is now based on a 'split achromat' lattice. This ensures compact ring dimensions of 10 x 10 m, whilst allowing both, in-ring experiments with gas jet targets and studies with extracted beams. In the USR, a wide range of beam parameters will be provided, ranging from very short pulses in the nanosecond regime to a coasting beam. In addition, a combined fast and slow extraction scheme was developed that allows for providing external experiments with cooled beams of different time structure. Furthermore, studies into beam diagnostics methods for the monitoring of ultra-low energy ions at beam intensities less than 106 were carried out. Here, we present the USR design with an emphasis on the expected beam parameters available to the experiments at FLAIR.
TUPPD081 Development of Carbon NanoTube (CNT) Cathodes at RadiaBeam 1590
  • L. Faillace, R.B. Agustsson, S. Boucher, A.Y. Murokh, A.V. Smirnov
    RadiaBeam, Santa Monica, USA
  RadiaBeam is developing Carbon Nanotube (CNT) cathodes for DC-pulsed and radio frequency (RF) driven electron sources. CNT cathodes, if realized, are capable of producing very high current density with low thermal emittance, due to ambient operating temperature. The initial experimental results of CNT cathodes are presented, including the high-voltage tests, and life time studies. CNT cathodes potential applications in accelerator science and microwave industry are discussed, and near term plans to test the CNT cathodes in the RF environment are presented.