Author: Sjobak, K.N.
Paper Title Page
THPPC011 Design of an Accelerating Structure for a 500 GeV CLIC using Ace3P 3296
 
  • K.N. Sjobak, E. Adli
    University of Oslo, Oslo, Norway
  • A. Grudiev, W. Wuensch
    CERN, Geneva, Switzerland
 
  Funding: Research Council of Norway
An optimized design of the main linac accelerating structure for a 500 GeV first stage of CLIC is presented. A similar long-range wakefield suppression scheme as for 3 TeV CLIC based on heavy waveguide damping is adopted. The accelerating gradient for the lower energy machine is 80 MV/m. The 500 GeV design has larger aperture radius in order to increase the maximum bunch charge and length which is limited by the short-range wakefields. The cell geometries have been optimized using a new parametric optimizer for Ace3P and details of the RF cell design are described. Parameters of the full structure are calculated and optimized using a power flow equation.