Author: Shemyakin, A.V.
Paper Title Page
MOPPR072 Fermilab PXIE Beam Diagnostics Development and Testing at the HINS Beam Facility 954
 
  • V.E. Scarpine, B.M. Hanna, V.A. Lebedev, L.R. Prost, A.V. Shemyakin, J. Steimel, M. Wendt
    Fermilab, Batavia, USA
 
  Funding: This work was supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359.
Fermilab is planning the construction of a prototype front end of the Project X linac. The Project X Injector Experiment (PXIE) is expected to accelerate 1 mA cw H beam up to 30 MeV. Some of the major goals of the project are to test a cw RFQ and H source, a broadband bunch-by-bunch beam chopper and a low-energy superconducting linac. The successful characterization and operation of such an accelerator places stringent requirements on beam line diagnostics. These crucial beam measurements include bunch currents, beam orbit, beam phase, bunch length, transverse profile and emittance, beam halo and tails, as well as the extinction performance of the broadband chopper. This paper presents PXIE beam measurement requirements and instrumentation development plans. Also presented are plans to test many of these instruments at the Fermilab High Intensity Neutrino Source (HINS) beam facility. Since HINS is already an operational accelerator, utilizing HINS for instrumentation testing allows for quicker development of the required PXIE diagnostics.
 
 
TUOBA01 Summary of Fermilab’s Recycler Electron Cooler Operation and Studies 1068
 
  • L.R. Prost, A.V. Shemyakin
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Fermilab’s Recycler ring was used as a storage ring for accumulation and subsequent manipulations of 8 GeV antiprotons destined for the Tevatron collider. To satisfy these missions, a unique electron cooling system was designed, developed and successfully implemented. The most important features that distinguish the Recycler cooler from other existing electron coolers are its relativistic energy (it employs a 4.3 MeV, 0.1 A DC electron beam), a weak continuous longitudinal magnetic field in the cooling section (~100 G), and lumped focusing elsewhere. With the termination of the collider operation at Fermilab, the cooler operation was also terminated. In this article, we will summarize the experience of commissioning, optimizing and running this unique machine over the 6 years of its existence.
 
slides icon Slides TUOBA01 [2.503 MB]  
 
WEPPD035 Design Considerations for an MEBT Chopper Absorber of 2.1MeV H at the Project X Injector Experiment at Fermilab 2585
 
  • C.M. Baffes, M.H. Awida, A.Z. Chen, Y.I. Eidelman, V.A. Lebedev, L.R. Prost, A.V. Shemyakin, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy
The Project X Injector Experiment (PXIE) will be a prototype of the Project X front end that will be used to validate the design concept and decrease technical risks. One of the most challenging components of PXIE is the wide-band chopping system of the Medium Energy Beam Transport (MEBT) section, which will form an arbitrary bunch pattern from the initially CW 162.5 MHz 5mA beam. The present scenario assumes diverting 80% of the beam to an absorber to provide a beam with the average current of 1mA to SRF linac. This absorber must withstand a high level of energy deposition and high ion fluence, while being positioned in proximity of the superconductive cavities. This paper discusses design considerations for the absorber, including specific challenges as spreading of energy deposition, management of temperatures and temperature-induced mechanical stresses, radiation effects, surface effects (sputtering and blistering), and maintaining vacuum quality. Thermal and mechanical analyses of a conceptual design are presented, and future plans for the fabrication and testing of a prototype are described.
 
 
WEPPD078 Progress with PXIE MEBT Chopper 2708
 
  • V.A. Lebedev, A.Z. Chen, R.J. Pasquinelli, D.W. Peterson, G.W. Saewert, A.V. Shemyakin, D. Sun, M. Wendt
    Fermilab, Batavia, USA
  • T. Tang
    SLAC, Menlo Park, California, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy
A capability to provide a large variety of bunch patterns is crucial for the concept of the Project X serving MW-range beam to several experiments simultaneously. This capability will be realized by the Medium Energy Beam Transport’s (MEBT) chopping system that will divert 80% of all bunches of the initially 5mA, 2.1 MeV CW 162.5 MHz beam to an absorber according to a pre-programmed bunch-by-bunch selection. Being considered one of the most challenging components, the chopping system will be tested at the Project X Injector Experiment (PXIE) facility that will be built at Fermilab as a prototype of the Project X front end. The bunch deflection will be made by two identical sets of travelling-wave kickers working in sync. Presently, two versions of the kickers are being investigated: a helical 200 Ω structure with a switching-type 500 V driver and a planar 50 Ω structure with a linear ±250 V amplifier. This paper will describe the chopping system scheme and functional specifications for the kickers, present results of electromagnetic measurements of the models, discuss possible driver schemes, and show a conceptual mechanical design.
 
 
THPPP057 PXIE Optics and Layout 3871
 
  • V.A. Lebedev, S. Nagaitsev, J.-F. Ostiguy, A.V. Shemyakin, B.G. Shteynas, N. Solyak
    Fermilab, Batavia, USA
 
  The Project X Injector Experiment (PXIE) will serve as a prototype for the Project X front end. The aim is to validate the Project-X design and to decrease technical risks, known to be mainly related to the front end. PXIE will accelerate a 1 mA CW beam to about 25 MeV. It will consist of an ion source, LEBT, CW RFQ, MEBT, two SC cryomodules, a diagnostic section and a beam dump. A bunch-by-bunch chopper located in the MEBT section will allow formation of an arbitrary bunch structure. PXIE deviates somewhat from the current Project-X front end concept in that it provides additional instrumentation and relies on a reduced number of kickers for bunch chopping; the diagnostic section also include an RF separator to allow studying extinction of removed bunches. The paper discusses the main requirements and constraints motivating the facility layout and optics. Final adjustments to the Project X front end design, if needed, will be based on operational experience gained with PXIE.
Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
 
 
THPPP058 PXIE: Project X Injector Experiment 3874
 
  • S. Nagaitsev, S.D. Holmes, R.D. Kephart, J.S. Kerby, V.A. Lebedev, C.S. Mishra, A.V. Shemyakin, N. Solyak, R.P. Stanek
    Fermilab, Batavia, USA
  • D. Li
    LBNL, Berkeley, California, USA
  • P.N. Ostroumov
    ANL, Argonne, USA
 
  A multi-MW proton facility, Project X has been proposed and is currently under development at Fermilab. As part of this development program, we are constructing a prototype of the front end of the Project X linac at Fermilab. The construction and successful operations of this facility will validate the concept for the Project X front end, thereby minimizing the primary technical risk element within the Project. The Project X Injector Experiment (PXIE) can be constructed over the period FY12-16 and will include an H ion source, a CW 2.1-MeV RFQ and two SC cryomodules providing up to 30 MeV energy gain at an average beam current of 1 mA. Successful operations of the facility will demonstrate the viability of novel front end technologies that will find applications beyond Project X in the longer term.  
 
THPPP092 Progress of the Front-End System Development for Project X at LBNL 3951
 
  • D. Li, M.D. Hoff, Q. Ji, A.R. Lambert, T. Schenkel, J.W. Staples, S.P. Virostek
    LBNL, Berkeley, California, USA
  • S. Nagaitsev, L.R. Prost, G.V. Romanov, A.V. Shemyakin
    Fermilab, Batavia, USA
  • C. Zhang
    IAP, Frankfurt am Main, Germany
 
  Funding: This work is supported by the Office of Science, United States Department of Energy under DOE contract DE-AC02-05CH11231.
A multi-MW proton facility, Project X has been proposed and is currently under development at Fermilab. Project X is a key accelerator complex for intensity frontier of future high energy physics programs in the US. In collaboration with Fermilab, LBNL takes the responsibility in the development and design studies of the front-end system for Project X. The front-end system would consist of H ion source(s), low-energy beam transport (LEBT), 162.5 MHz normal conducting CW Radio-Frequency-Quadrupole (RFQ) accelerator, medium-energy beam transport (MEBT), and beam chopper(s). In this paper, we will review and present recent progress of the front-end system studies, which will include the RFQ beam dynamics design, RF structure design, thermal and mechanical analyses and fabrication plan, LEBT simulation studies and concept for LEBT chopper.