Author: Setiniyaz, S.
Paper Title Page
TUPPC055 Development of an Automatic MATLAB based Emittance Measurement Tool for the IAC Accelerators 1296
 
  • C.F. Eckman, A. Andrews, Y. Kim, S. Setiniyaz, D.P. Wells
    IAC, Pocatello, IDAHO, USA
  • A.W. Hunt
    ISU, Pocatello, Idaho, USA
 
  At the Idaho Accelerator Center (IAC) of Idaho State University, we have been operating fifteen low energy accelerators. To optimize those accelerators properly, we have to measure the transverse beam emittance. To measure the transverse beam emittance of an S-band linear accelerator with the quadrupole scan technique, we installed an Optical Transition Radiation (OTR) screen and a digital CCD camera in the bealime of the accelerator. From the images of the digital CCD camera, the transverse beam profile on the OTR screen can be acquired. To extract the transverse beam size and to estimate the transverse emittance, we have developed a MATLAB program. This paper describe the details of the MATLAB program and performance of our MATLAB based emittance measurement tool.  
 
MOPPR087 Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center 990
 
  • S. Setiniyaz, T.A. Forest
    ISU, Pocatello, Idaho, USA
  • K. Chouffani, Y. Kim
    IAC, Pocatello, IDAHO, USA
  • A. Freyberger
    JLAB, Newport News, Virginia, USA
 
  A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.