Author: Seletskiy, S.
Paper Title Page
TUPPP090 Studies of Controlled Laser-induced Microbunching Instability at Source Development Laboratory 1798
 
  • S. Seletskiy, B. Podobedov, Y. Shen, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  We present the studies of controlled microbunching intentionally induced on the beam by the photocathode laser with modulated longitudinal profile. Varying the depth and frequency of longitudinal modulation of the laser pulse allowed us to observe the development of microbunching instability at BNL Source Development Laboratory (SDL) in the controlled environment. That allowed us to benchmark the model of the microbunching gain for the first time. In addition to that, we demonstrated for the first time a constructive work of a so-called longitudinal space charge amplifier, which in case under consideration can be utilized for enhancement of linac-based sources of THz radiation.  
 
TUPPP092 Renovated Two-stage Bunch Compressor for the International Linear Collider 1801
 
  • S. Seletskiy
    BNL, Upton, Long Island, New York, USA
  • N. Solyak
    Fermilab, Batavia, USA
 
  The International Linear Collider (ILC) utilizes a Bunch Compressor (BC) in the Damping Ring to Main Linac Transfer Line (RTML) that compresses the RMS bunch length from 6 mm to 300 micrometers before sending the beam to the Main Linac. It was decided to utilize a two stage BC for the design baseline, since it provides an additional option for the ILC to work with 150 micrometers long bunches and reduces the energy spread at the RTML exit under normal operational conditions. In this paper we report the new design of the optimized two-stage bunch compressor.  
 
TUPPR043 New Baseline Design of the ILC RTML System 1915
 
  • N. Solyak, V.V. Kapin, A. Vivoli
    Fermilab, Batavia, USA
  • S. Seletskiy
    BNL, Upton, Long Island, New York, USA
 
  The new ILC baseline was proposed in 2009 (Strawman baseline - SB2009) to minimize cost of the machine and accommodate many changes made in the design of the accelerator systems. The biggest changes are made in the central area, where BDS, RTML, DR, electron and positron sources are sharing the tunnels. A new layout of the compact DR and re-location of the electron and positron sources to the main tunnel requires a new lattice design for all beamlines in this area. The lattice design was coordinated between accelerator systems and Convention Facility and Siting (CFS) group to eliminate conflicts between beamlines and satisfy construction requirements. In this paper we present a new design of the RTML electron and positron lattices in the central area and other modifications made in the RTML line to accommodate changes to the beamline layouts.