Author: Schwartz, B.T.
Paper Title Page
MOPPC090 Coupling Modulator Simulations into an FEL Amplifier for Coherent Electron Cooling 346
 
  • I.V. Pogorelov, G.I. Bell, D.L. Bruhwiler, B.T. Schwartz, S.D. Webb
    Tech-X, Boulder, Colorado, USA
  • Y. Hao, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the US DOE Office of Science, Office of Nuclear Physics under grant numbers DE-FG02-08ER85182 and DE-SC0000835.
Next-generation ion colliders will require effective cooling of high-energy hadron beams. Coherent electron cooling (CeC) can in principle cool relativistic hadron beams on orders-of-magnitude shorter time scales than other techniques*. Particle-in-cell (PIC) simulations of a CeC modulator with the parallel VORPAL framework generate macro-particle distributions with subtle but important phase space correlations. To couple these macro-particles into a 3D simulation code for the free-electron laser (FEL) amplifier, while retaining all details of the 6D phase space coordinates, we implemented an alternative approach based on particle-clone pairs**. Our approach allows for self-consistent treatment of shot noise and spontaneous radiation, with no need for quiet-start initialization of the FEL macro-particles' ponderomotive phase. We present results of comparing fully 3D amplifier modeling based on the particle-clone approach vs GENESIS simulations where distribution of bunching parameter was used as input. We also discuss enabling direct coupling of the VORPAL delta-f simulation output into 3D distributions of particle-clone pairs.
* V.N. Litvinenko and Y.S. Derbenev, Phys. Rev. Lett. 102, 114801 (2009).
** V.N. Litvinenko, "Macro-particle FEL model with self-consistent spontaneous radiation," unpublished (2002).
 
 
MOPPC091 Parallel 3D Simulations to Support Commissioning of a Solenoid-based LEBT Test Stand 349
 
  • B.T. Schwartz, D.T. Abell, D.L. Bruhwiler, Y. Choi, S. Mahalingam, P. Stoltz, J. von Stecher
    Tech-X, Boulder, Colorado, USA
  • B. Han, M.P. Stockli
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work is supported by the US DOE Office of Science, Office of Basic Energy Sciences, including grant No. DE-SC0000844.
A solenoid-based low-energy beam transport (LEBT) test stand is under development for the Spallation Neutron Source (SNS). To support commissioning of the test stand, the parallel Vorpal framework is being used for 3D electrostatic particle-in-cell (PIC) simulations of H beam dynamics in the LEBT, including impact ionization physics and MHz chopping of the partially-neutralized \Hm beam. Here we describe the process of creating a partially-neutralized beam and examine the effects of a single chopping event on the beam's emittance.
 
 
MOPPD016 Status of Proof-of-principle Experiment for Coherent Electron Cooling 400
 
  • I. Pinayev, S.A. Belomestnykh, I. Ben-Zvi, J. Bengtsson, A. Elizarov, A.V. Fedotov, D.M. Gassner, Y. Hao, D. Kayran, V. Litvinenko, G.J. Mahler, W. Meng, T. Roser, B. Sheehy, R. Than, J.E. Tuozzolo, G. Wang, S.D. Webb, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, D.L. Bruhwiler, V.H. Ranjbar, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • A. Hutton, G.A. Krafft, M. Poelker, R.A. Rimmer
    JLAB, Newport News, Virginia, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: US DOE Office of Science, DE-FC02-07ER41499, DE-FG02-08ER85182; NERSC DOE contract No. DE-AC02-05CH11231.
Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron colliders. To verify the concept we conduct proof-of-the-principle experiment at RHIC. In this paper, we describe the current experimental setup to be installed into 2 o’clock RHIC interaction regions. We present current design, status of equipment acquisition and estimates for the expected beam parameters.
 
 
THEPPB002 High-Fidelity 3D Modulator Simulations of Coherent Electron Cooling Systems 3231
 
  • G.I. Bell, D.L. Bruhwiler, I.V. Pogorelov, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • Y. Hao, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the US DOE Office of Science, Office of Nuclear Physics, grant numbers DE-SC0000835 and DE-FC02-07ER41499. Resources of NERSC were used under contract No. DE-AC02-05CH11231.
Next generation electron-hadron colliders will require effective cooling of high-energy, high-intensity hadron beams. Coherent electron cooling (CeC) can in principle cool relativistic hadron beams on orders-of-magnitude shorter time scales than other techniques*. The parallel VORPAL framework is used for 3D delta-f PIC simulations of anisotropic Debye shielding in a full longitudinal slice of the co-propagating electron beam, choosing parameters relevant to the proof-of-principle experiment under development at BNL. The transverse density conforms to an exponential Vlasov equilibrium for Gaussian velocities, with no longitudinal density variation. Comparison with 1D1V Vlasov/Poisson simulations shows good agreement in 1D. Parallel 3D simulations at NERSC show 3D effects for ions moving longitudinally and transversely. Simulation results are compared with the constant-density theory of Wang and Blaskiewicz**.
* V.N. Litvinenko and Y.S. Derbenev, Phys. Rev. Lett. 102, 114801 (2009).
** Wang and Blaskiewicz, Phys Rev E 78, 026413 (2008).