Paper  Title  Page 

MOPPC085  An Integrated Green Function Poisson Solver for Rectangular Waveguides  337 


Funding: DOE Office of Science, Office of High Energy Physics and Office of Advanced Scientific Computing Research A new method is presented for solving Poisson's equation inside a rectangular waveguide. The method uses Fast Fourier Transforms (FFTs) to perform mixed convolutions and correlations of the charge density with an integrated Green function. Due to its similarity to the widely used Hockney algorithm for solving Poisson's equation in free space, this capability can be easily implemented in many existing particleincell beam dynamics codes. 

TUEPPB013  Development of an Advanced Computational Tool for StarttoEnd Modeling of Next Generation Light Sources  1143 


Funding: Work supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC0205CH11231. Starttoend simulation plays an important role in designing next generation light sources. In this paper, we present recent progress in further development and application of the parallel beam dynamics code, IMPACT, towards the fully starttoend, multiphysics simulation of a next generation Xray FEL light source. We will discuss numerical methods and physical models used in the simulation. We will also present some preliminary simulation results of a beam transporting through photoinjector, beam delivery system, and FEL beamlines. 

TUPPP036  Largescale Simulation of Synchrotron Radiation using a LienardWiechert Approach  1689 


Funding: DOE Office of Science, Office of Basic Energy Sciences; NNSA. Synchrotron radiation is one of the most important and difficult to model phenomena affecting lepton accelerators. Largescale parallel modeling provides a means to explore properties of synchrotron radiation that would be impossible to study through analytical methods alone. We have performed firstprinciples simulations of synchrotron radiation, using a LienardWiechert approach, with the same number of simulation particles as would be found in bunches with charge up to 1 nC. The results shed light on the importance of shot noise effects, the amplification of coherent synchrotron radiation due to longitudinal microbunching, the interplay of electric and magnetic forces, and the limits of the widely used onedimensional model. 

WEPPR011  Numerical Simulation Study of the Montague Resonance at the CERN Proton Synchrotron  2958 


Funding: This work partially supported by the US Department of Energy through the US LHC Accelerator Research Program (LARP) under Contract No. DEAC0205CH11231. The Montague resonance provides a coupling between the vertical and the horizontal dynamics of beams and can cause particle losses due to unequal aperture sizes of the accelerator. In this paper, we present a new numerical simulation study of a previous Montague resonance crossing experiment at the CERN PS including detailed threedimensional spacecharge effects and machine nonlinearity. The simulation reproduces the experimental data and suggests that the longitudinal synchrotron motion played an important role in enhancing transverse resonance coupling. 
