Author: Rossi, L.
Paper Title Page
TUOAC03 Status of a Single-Aperture 11 T Nb3Sn Demonstrator Dipole for LHC Upgrades 1098
 
  • A.V. Zlobin, N. Andreev, G. Apollinari, E.Z. Barzi, R. Bossert, G. Chlachidze, V. Kashikhin, A. Nobrega, I. Novitski, D. Turrioni, R. Yamada
    Fermilab, Batavia, USA
  • B. Auchmann, M. Karppinen, L. Oberli, L. Rossi, D. Smekens
    CERN, Geneva, Switzerland
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
The planned upgrade of the LHC collimation system includes two additional collimators to be installed in the dispersion suppressor areas of points 2, 3 and 7. The necessary longitudinal space for the collimators could be provided by replacing some 8.33 T NbTi LHC main dipoles with 11 T dipoles based on Nb3Sn superconductor and compatible with the LHC lattice and main systems. To demonstrate t his possibility Fermilab and CERN have started in 2011 a joint R&D program with the goal of building by 2014 a 5.5-m long twin-aperture dipole prototype suitable for installation in the LHC. The first step of this program is the development of a 2-m long single-aperture demonstration dipole with the nominal field of 11 T at the LHC nominal current of ~11.85 kA and 60 mm bore with ~20% margin. This paper describes the design, construction and test results of the single-aperture Nb3Sn demonstrator model for the LHC collimation system upgrade.
 
slides icon Slides TUOAC03 [5.812 MB]  
 
THPPD009 Accelerator Magnets R&D Programme at CERN 3512
 
  • D. Tommasini, L. Bottura, G. De Rijk, L. Rossi
    CERN, Geneva, Switzerland
 
  The exploitation and evolution of the CERN accelerator complex pose a continuous challenge for magnet engineers. Superconducting and resistive magnets have a comparable share. The overall mass of either is approximately 50,000 tons, spread over 3 major machines (PS, SPS and LHC), two large experimental area, and a number of smaller experiments and accelerator rings. On the short term (2012-2014) the CERN plan is to upgrade its injection chain (Linac4) and experimental area (HIE-Isolde, ELENA) that require mostly a multitude of resistive magnets. The medium-term plan for the evolution of the LHC complex (2015-2021), also referred to as High-Luminosity LHC, foresees interventions on about 1 km of the machine, with magnets to be substituted with higher field, larger aperture, or both. On the long term (2025-2035) we are exploring the technological challenges of very high field magnets, at the verge of 20 T for a High Energy LHC (HE-LHC), or extremely stable high gradient quadrupoles for the Compact Linear Collider (CLIC). In this paper we provide an overview of the R&D activities addressing the various lines of development, the technology milestones, and a broad time schedule.