Author: Rossi, A.R.
Paper Title Page
TUPPR088 Baseline Design of the SuperB Factory Injection System 2032
  • S. Guiducci, A. Bacci, M.E. Biagini, R. Boni, M. Boscolo, D. Pellegrini, M.A. Preger, P. Raimondi, A.R. Rossi, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • M.A. Baylac
    LPSC, Grenoble, France
  • J. Brossard, S. Cavalier, O. Dadoun, T. Demma, P. Lepercq, E. Ngo Mandag, C. Rimbault, A. Variola
    LAL, Orsay, France
  • J.T. Seeman
    SLAC, Menlo Park, California, USA
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
  The injection complex of the SuperB, B-factory project of INFN consists of a polarized electron gun, a positron production system, electron and positron linac sections, a positron damping ring and the transfer lines connecting these systems and the collider main rings. To keep the ultra high luminosity nearly constant, continuous injection of 4 GeV electrons and 7 GeV positrons in both Low Energy Ring (LER) and High Energy Ring (HER) is necessary. In this paper we describe the baseline design and the beam dynamics studies performed to evaluate the system performance.  
WEEPPB002 Plasma Acceleration Experiment at SPARCLAB with External Injection 2169
  • L. Serafini, A. Bacci
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • M. Bellaveglia, M. Castellano, E. Chiadroni, G. Di Pirro, M. Ferrario, A. Gallo, G. Gatti, A.R. Rossi, C. Vaccarezza
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • C. Maroli, V. Petrillo
    Universita' degli Studi di Milano, Milano, Italy
  • A. Mostacci
    URLS, Rome, Italy
  • P. Tomassini
    Università degli Studi di Milano, Milano, Italy
  At the SPARC-LAB facility of INFN-LNF we are installing two transport lines for ultra-short electron bunches and an ultra-intense laser pulses, generated by the SPARC photo-injector and by the FLAME laser in a synchronized fashion at the tens of fs level, to co-propagate inside a hydrogen filled glass capillary, in order to perform acceleration of the electron bunch by a plasma wave driven by the laser pulse. The main aim of this experiment is to demonstrate that a high brightness electron beam can be accelerated by a plasma wave without any significant degradation of its quality. A 10 pC electron bunch, 10 fs long is produced by SPARC and transported to injection into the capillary, which is 100 micron wide, at a gas density around 5*1017 ne/cm3 . The laser pulse, 25 fs long, focused down to 30 microns into the capillary is injected ahead of the bunch, drives a weakly non-linear plasma wave with wavelength of about 120 microns. A proper phasing of the two pulses allows acceleration of electrons from the injection energy of 150 MeV up to about 1 GeV for a 10 cm long capillary. Installation of the beam lines is foreseen by the end of 2012 and first tests starting in mid 2013.  
WEPPP017 Recent Results at the SPARCLAB Facility 2758
  • M. Ferrario, D. Alesini, M.P. Anania, M. Bellaveglia, R. Boni, M. Castellano, E. Chiadroni, G. Di Pirro, A. Drago, A. Esposito, A. Gallo, C. Gatti, G. Gatti, A. Ghigo, T. Levato, E. Pace, L. Pellegrino, R. Pompili, A.R. Rossi, B. Spataro, P. Tomassini, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A. Bacci, C. De Martinis, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • G. Dattoli, E. Di Palma, L. Giannessi, A. Petralia, M. Quattromini, C. Ronsivalle, I.P. Spassovsky, V. Surrenti
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • D. Di Giovenale
    INFN-Roma II, Roma, Italy
  • U. Dosselli
    INFN, Roma, Italy
  • R. Faccini
    INFN-Roma, Roma, Italy
  • R. Fedele
    Naples University Federico II, Mathematical, Physical and Natural Sciences Faculty, Napoli, Italy
  • M. Gambaccini
    INFN-Ferrara, Ferrara, Italy
  • D. Giulietti
    UNIPI, Pisa, Italy
  • L.A. Gizzi, L. Labate
    CNR/IPP, Pisa, Italy
  • P. Londrillo
    INFN-Bologna, Bologna, Italy
  • S. Lupi
    Università di Roma I La Sapienza, Roma, Italy
  • A. Mostacci, L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • G. Passaleva
    INFN-FI, Sesto Fiorentino, Italy
  • V. Petrillo
    Universita' degli Studi di Milano, Milano, Italy
  • J.V. Rau
    ISM-CNR, Rome, Italy
  • G. Turchetti
    Bologna University, Bologna, Italy
  A new facility named SPARCLAB (Sources for Plasma Accelerators and Radiation Compton with Lasers and Beams) has been recently launched at the INFN National Labs in Frascati, merging the potentialities of the old projects SPARC and PLASMONX. The SPARC project, a collaboration among INFN, ENEA and CNR, is now completed, hosting a 150 MeV high brightness electron beam injector which feeds a 12 meters long undulator. Observation of FEL radiation in the SASE, Seeded and HHG modes has been performed from 500 nm down to 40 nm wevelength. A second beam line has been also installed to drive a narrow band THz radiation source. In parallel to that, INFN decided to host a 300 TW laser that will be linked to the linac and devoted to explore laser-matter interaction, in particular with regard to laser-plasma acceleration in the self injection and external injection modes, (the PLASMONX experiments). The facility will be also used for particle driven plasma acceleration experiments (the COMB experiment). A Thomson scattering experiment coupling the electron bunch to the high-power laser to generate coherent monochromatic X-ray radiation is also in the commissioning phase.  
TUPPD055 Characterization of ps-spaced Comb Beams at SPARC 1527
  • A. Mostacci
    URLS, Rome, Italy
  • A. Bacci, A.R. Rossi
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • M. Bellaveglia, E. Chiadroni, G. Di Pirro, M. Ferrario, G. Gatti, C. Vaccarezza
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma), Italy
  SPARC in Frascati is a high brightness photo-injector used to explore advanced beam manipulation techniques. Sub-picosecond, high brightness electron bunch trains (the so called comb beam) can be generated illuminating the cathode of a RF photoinjector with a laser pulse train and via velocity bunching technique. In this paper different aspects of the physics of this advanced beam manipulation technique are discussed combining simulation and measurements. Beam dynamics numerical macroparticle simulations have been compared with the experimental results for model validation; they allow to gain insights on the beam evolution highlighting several aspects which can not be measured. In particular, we focus on the train evolution in the linac sections and in the dog-leg line up to the THz station and on the effective rms length of the single pulses within the train when it becomes shorter than the resolution.