Author: Rinolfi, L.
Paper Title Page
TUPPC086 Conceptual Design of the CLIC damping rings 1368
 
  • Y. Papaphilippou, F. Antoniou, M.J. Barnes, S. Calatroni, P. Chiggiato, R. Corsini, A. Grudiev, J. Holma, T. Lefèvre, M. Martini, M. Modena, N. Mounet, A. Perin, Y. Renier, G. Rumolo, S. Russenschuck, H. Schmickler, D. Schoerling, D. Schulte, M. Taborelli, G. Vandoni, F. Zimmermann
    CERN, Geneva, Switzerland
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • A. Bernhard
    KIT, Karlsruhe, Germany
  • M.J. Boland
    ASCo, Clayton, Victoria, Australia
  • A.V. Bragin, E.B. Levichev, S.V. Sinyatkin, P. Vobly, K. Zolotarev
    BINP SB RAS, Novosibirsk, Russia
  • M. Korostelev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • E. Koukovini
    EPFL, Lausanne, Switzerland
  • M.A. Palmer
    CLASSE, Ithaca, New York, USA
  • M.T.F. Pivi, S.R. Smith
    SLAC, Menlo Park, California, USA
  • R.P. Rassool, K.P. Wootton
    The University of Melbourne, Melbourne, Australia
  • L. Rinolfi
    JUAS, Archamps, France
  • A. Vivoli
    Fermilab, Batavia, USA
 
  The CLIC damping rings are designed to produce unprecedentedly low-emittances of 500 nm and 5 nm normalized at 2.86 GeV, in all beam dimensions with high bunch charge, necessary for the performance of the collider. The large beam brightness triggers a number of beam dynamics and technical challenges. Ring parameters such as energy, circumference, lattice, momentum compaction, bending and super-conducting wiggler fields are carefully chosen in order to provide the target emittances under the influence of intrabeam scattering but also reduce the impact of collective effects such as space-charge and coherent synchrotron radiation. Mitigation techniques for two stream instabilities have been identified and tested. The low vertical emittance is achieved by modern orbit and coupling correction techniques. Design considerations and plans for technical system, such as damping wigglers, transfer systems, vacuum, RF cavities, instrumentation and feedback are finally reviewed.  
 
WEPPR076 Positron Options for the Linac-ring LHeC 3108
 
  • F. Zimmermann, O.S. Brüning, Y. Papaphilippou, D. Schulte, P. Sievers
    CERN, Geneva, Switzerland
  • H.-H. Braun
    Paul Scherrer Institut, Villigen, Switzerland
  • E.V. Bulyak
    NSC/KIPT, Kharkov, Ukraine
  • M. Klein
    The University of Liverpool, Liverpool, United Kingdom
  • L. Rinolfi
    JUAS, Archamps, France
  • A. Variola, Z.F. Zomer
    LAL, Orsay, France
  • V. Yakimenko
    BNL, Upton, Long Island, New York, USA
 
  The full physics program of a future Large Hadron electron Collider (LHeC) requires both pe+ and pe- collisions. For a pulsed 140-GeV or an ERL-based 60-GeV Linac-Ring LHeC this implies a challenging rate of, respectively, about 1.8·1015 or 4.4·1016 e+/s at the collision point, which is about 300 or 7000 times the past SLC rate. We consider providing this e+ rate through a combination of measures: (1) Reducing the required production rate from the e+ target through colliding e+ (and the LHC protons) several times before deceleration, by reusing the e+ over several acceleration/deceleration cycles, and by cooling them, e.g., with a compact tri-ring scheme or a conventional damping ring in the SPS tunnel. (2) Using an advanced target, e.g., W-granules, rotating wheel, sliced-rod converter, or liquid metal jet, for converting gamma rays to e+. (3) Selecting the most powerful of several proposed gamma sources, namely Compton ERL, Compton storage ring, coherent pair production in a strong laser, or high-field undulator radiation from the high-energy lepton beam. We describe the various concepts, present example parameters, estimate the electrical power required, and mention open questions.