Author: Rihaoui, M.M.
Paper Title Page
WEPPD077 Generation of Picosecond Electron-bunch Trains with Variable Spacing Using a Multi-pulse Photocathode Laser 2705
 
  • P. Piot
    Fermilab, Batavia, USA
  • M.E. Conde, W. Gai, C.-J. Jing, R. Konecny, W. Liu, J.G. Power, Z.M. Yusof
    ANL, Argonne, USA
  • D. Mihalcea, P. Piot, M.M. Rihaoui
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Work supported by DOE awards FG-02-08ER41532 and DE-AC02-06CH11357.
We demonstrate the generation of a train of electron bunches with variable spacing at the Argonne Wakefield Accelerator. The photocathode ultraviolet laser pulse consists of a train of four pulses produced via polarization splitting using two alpha-BBO crystals. The photoemitted electron bunches are then manipulated in a horizontally-bending dogleg with variable longitudinal dispersion. A downstream vertically-deflecting cavity is then used to diagnose the temporal profile of the electron beam. The generation of a train composed of four bunches with tunable spacing is demonstrated. Such train of bunch could have application to, e.g., the resonant excitation of wakefield in dielectric-lined waveguides.
 
 
THPPC031 Commissioning of a 1.3-GHz Deflecting Cavity for Phase-Space Exchange at the Argonne Wakefield Accelerator 3350
 
  • P. Piot
    Fermilab, Batavia, USA
  • M.E. Conde, W. Gai, C.-J. Jing, R. Konecny, W. Liu, J.G. Power, Z.M. Yusof
    ANL, Argonne, USA
  • D. Mihalcea, M.M. Rihaoui
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Work supported by DOE awards FG-02-08ER41532 and DE-AC02-06CH11357.
A 1/2-1-1/2 cell normal-conducting 1.3-GHz deflecting cavity was recently installed at the Argonne Wakefield Accelerator. The cavity will soon be included in a transverse-to-longitudinal phase space exchanger that will eventually be used to shaped the current profile of AWA electron bunches in support of dielectric wakefield experimentS with enhanced transformer ratio. In this paper we report on the initial commissioning of the deflecting cavity including rf-conditioning and beam-based measurement of the deflecting strength.