Author: Redaelli, S.
Paper Title Page
MOPPC006 90m Optics Studies and Operation in the LHC 130
  • H. Burkhardt, G.J. Müller, S. Redaelli, R. Tomás, G. Vanbavinckhove, J. Wenninger
    CERN, Geneva, Switzerland
  • S. Cavalier
    LAL, Orsay, France
  A high β* = 90 m optics was commissioned and used for first very forward physics operation in the LHC in 2011. The experience gained from working with this optics in 5 studies and operation periods in 2011 was very positive. The target β* = 90 m was reached by a de-squeeze from the standard 11 m injection and ramp optics on the first attempt and collisions and first physics results obtained in the second study. The optics was measured and corrected with good precision. The running conditions were very clean and allowed for measurements with roman pots very close to the beam.  
MOPPC016 Combined Ramp and Squeeze at the Large Hadron Collider 157
  • S. Redaelli, M. Lamont, G.J. Müller, R. Tomás, J. Wenninger
    CERN, Geneva, Switzerland
  • N. Ryckx
    EPFL, Lausanne, Switzerland
  In the first two years of operation of the CERN Large Hadron Collider (LHC), the betatron squeeze has been carried out at constant flat top energy of 3.5 TeV. Squeeze setting functions are separated from the energy ramp functions. This ensured a maximum flexibility during commissioning because stopping at all intermediate optics for detailed measurements was possible. In order to then improve the efficiency of the operational cycle, combining the ramp and squeeze has been considered. In this paper, the various possibilities for this scheme are reviewed, and proposals of optimized operational cycles with combined ramp and squeeze are presented for different energies. Results of beam tests are also discussed.  
MOPPD062 Aperture Measurements in the LHC Interaction Regions 508
  • S. Redaelli, M.C. Alabau Pons, R.W. Assmann, R. Bruce, M. Giovannozzi, G.J. Müller, M. Pojer, J. Wenninger
    CERN, Geneva, Switzerland
  The aperture of the LHC interaction regions is crucial for the LHC performance because it determines the smaller β* that can be achieved. The aperture has been measured at a maximum energy of 3.5 TeV and at different β* values, following optimized procedure to allow safe measurements at high energy. In this paper, the results of these aperture measurements, which are used as a reference for β* reach and crossing scheme estimates at the LHC interaction points, are presented.  
TUPPC081 First Experimental Observations from the LHC Dynamic Aperture Experiment 1362
  • M. Giovannozzi, M. Albert, G.E. Crockford, S.D. Fartoukh, W. Höfle, E.H. Maclean, A. Macpherson, L. Ponce, S. Redaelli, H. Renshall, F. Roncarolo, R.J. Steinhagen, E. Todesco, R. Tomás, W. Venturini Delsolaro
    CERN, Geneva, Switzerland
  • R. Miyamoto
    BNL, Upton, Long Island, New York, USA
  Following intensive numerical simulations to compute the dynamic aperture for the LHC in the design phase, the successful beam commissioning and the ensuing beam operations opened the possibility of performing beam measurements of the dynamics aperture. In this paper the experimental set-up and the first observations based on the few experimental sessions performed will be presented and discussed in detail.  
TUPPR068 The Achromatic Telescopic Squeezing Scheme: Basic Principles and First Demonstration at the LHC 1978
  • S.D. Fartoukh, R. De Maria, B. Goddard, W. Höfle, M. Lamont, G.J. Müller, L. Ponce, S. Redaelli, R.J. Steinhagen, M. Strzelczyk, R. Tomás, G. Vanbavinckhove, J. Wenninger
    CERN, Geneva, Switzerland
  • R. Miyamoto
    ESS, Lund, Sweden
  The Achromatic Telescopic Squeezing (ATS) scheme [1] is a novel squeezing mechanism enabling the production of very low β* in circular colliders. The basic principles of the ATS scheme will be reviewed together with its strong justification for the High-Luminosity LHC Project. In this context, a few dedicated beam experiments were meticulously prepared and took place at the LHC in 2011. The results obtained will be highlighted, demonstrating already the potential of the ATS scheme for any upgrade project relying on a strong reduction of β*.
[1] S. Fartoukh, "An Achromatic Telescopic Squeezing (ATS) Scheme For The LHC Upgrade," IPAC'11, WEPC037, p. 2088 (2001).
TUPPR097 Modeling and Simulation of LHC Beam-Based Collimator Setup 2059
  • G. Valentino, N.J. Sammut
    University of Malta, Information and Communication Technology, Msida, Malta
  • R.W. Assmann, F. Burkart, S. Redaelli, A. Rossi, D. Wollmann
    CERN, Geneva, Switzerland
  • L. Lari
    IFIC, Valencia, Spain
  In the 2011 Large Hadron Collider run, collimators were aligned for proton and heavy ion beams using a semi-automatic setup algorithm. The algorithm provided a reduction in the beam time required for setup, an elimination of beam dumps during setup and higher accuracy with respect to manual alignment. A collimator setup simulator was developed based on a Gaussian model of the beam distribution as well as a parametric model of the beam losses. A time-varying beam loss signal can be simulated for a given collimator movement into the beam. The simulation results and comparison to measurement data obtained during collimator setups and dedicated fills for beam halo scraping are presented. The simulator will then be used to develop a fully automatic collimator alignment algorithm.  
TUPPR098 Comparison of LHC Collimator Beam-Based Alignment Centers to BPM-Interpolated Centers 2062
  • G. Valentino, N.J. Sammut
    University of Malta, Information and Communication Technology, Msida, Malta
  • R.W. Assmann, R. Bruce, G.J. Müller, S. Redaelli, A. Rossi, G. Valentino
    CERN, Geneva, Switzerland
  • L. Lari
    IFIC, Valencia, Spain
  The beam centers at the Large Hadron Collider collimators are determined by beam-based alignment, where both jaws of a collimator are moved in separately until a loss spike is detected on a Beam Loss Monitor downstream. Orbit drifts of more than a few hundred micrometers cannot be tolerated, as they would reduce the efficiency of the collimation system. Beam Position Monitors (BPMs) are installed at various locations around the LHC ring, and a linear interpolation of the orbit can be obtained at the collimator positions. In this paper, the results obtained from beam-based alignment are compared with the orbit interpolated from the BPM data throughout the 2011 LHC proton run. The stability of the orbit determined by collimator alignment during the run is evaluated.  
MOPPD082 Recent T980 Crystal Collimation Studies at the Tevatron Exploiting a Pixel Detector System and a Multi-strip Crystal Array 559
  • D.A. Still, G. Annala, R.A. Carrigan, A.I. Drozhdin, T.R. Johnson, N.V. Mokhov, V. Previtali, R.A. Rivera, V.D. Shiltsev, J.R. Zagel, V.V. Zvoda
    Fermilab, Batavia, USA
  • Y.A. Chesnokov, I.A. Yazynin
    IHEP, Moscow Region, Russia
  • V. Guidi, A. Mazzolari
    INFN-Ferrara, Ferrara, Italy
  • Yu.M. Ivanov
    PNPI, Gatchina, Leningrad District, Russia
  • D. Mirarchi, S. Redaelli
    CERN, Geneva, Switzerland
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy through the US LHC Accelerator Research Program (LARP).
With the shutdown of the Tevatron, the T-980 crystal collimation experiment at Fermilab has been successfully completed. Results of dedicated beam studies in May 2011 are described in this paper. For these studies, two multi-strip crystals were installed in the vertical goniometer. A two-plane CMS pixel detector was positioned upstream of the E03 collimator to image beam deflected by the crystals. This new enhanced hardware yielded impressive results. For the first time, a 980-GeV proton halo beam, channeled by an O-shaped crystal of the horizontal goniometer, was imaged using the pixel detector. The performance of this crystal, the first element of the collimation system, was very good. Reproducible results on the reduction of local beam losses were also obtained with an 8-strip crystal. For volume reflection these beam losses were measured with the PIN diodes and loss monitors at the E03 collimator. The long range beam losses for the channeled beam were observed using the F17 collimator one third of the ring downstream of the crystal. The measured channeling efficiency of the O-shaped crystal and the volume reflection efficiency of the 8-strip crystal were both ~70%.
TUPPR092 Transient Beam Losses in the LHC Injection Kickers from Micron Scale Dust Particles 2044
  • B. Goddard, P. Adraktas, T. Baer, M.J. Barnes, F. Cerutti, A. Ferrari, N. Garrel, A.H.J. Gerardin, M. Guinchard, A. Lechner, A. Masi, V. Mertens, R. Morón Ballester, S. Redaelli, J.A. Uythoven, V. Vlachoudis, F. Zimmermann
    CERN, Geneva, Switzerland
  Transient beam losses on a time scale of a few ms have been observed in the LHC injection kickers, occurring mainly shortly after beam injection with a strong correlation in time to the kicker pulsing. The beam losses, which have at times affected LHC availability, are attributed to micron scale ceramic dust particles detached from the alumina beam pipe and accelerated into the beam. The beam related observations are described, together with laboratory measurements of beam pipe contamination and kicker vibration, simulations of electric field in the beam pipe and the basic dynamic model. Energy deposition simulations modelling the beam losses are presented and compared to measurement. Extrapolations to future LHC operation at higher intensities and energies are made, and prospects for mitigation are discussed.  
WEPPR069 Measurements and Simulations of Transverse Coupled-Bunch Instability Rise Times in the LHC 3087
  • N. Mounet, R. Alemany-Fernandez, W. Höfle, D. Jacquet, V. Kain, E. Métral, L. Ponce, S. Redaelli, G. Rumolo, R. Suykerbuyk, D. Valuch
    CERN, Geneva, Switzerland
  In the current configuration of the LHC, multibunch instabilities due to the beam-coupling impedance would be in principle a critical limitation if they were not damped by the transverse feedback. For the future operation of the machine, in particular at higher bunch intensities and/or higher number of bunches, one needs to make sure the coupled-bunch instability rise times are still manageable by the feedback system. Therefore, in May 2011 experiments were performed to measure those rise times and compare them with the results obtained from the LHC impedance model and the HEADTAIL wake fields simulation code. At injection energy, agreement turns out to be very good, while a larger discrepancy appears at top energy.  
THPPR039 Controlled Transverse Blow-Up of High-energy Proton Beams for Aperture Measurements and Loss Maps 4059
  • W. Höfle, R.W. Assmann, S. Redaelli, R. Schmidt, D. Valuch, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  A technique was developed to blow-up transversely in a controlled way high energy proton beams in the LHC. The technique is based on band limited white noise excitation that is injected into the transverse damper feedback loop. The injected signal can be gated to selectively blow-up individual trains of bunches. The speed of transverse blow-up can be precisely controlled. This opens the possibility to perform safely and efficiently aperture measurements and loss maps with high intensity bunch trains well above stored beam energies that are considered to be safe. In particular, lengthy procedures for measurements at top energy, otherwise requiring multiple fills of individual bunches, can be avoided. In this paper, the method is presented and results from beam measurements are discussed and compared with alternative blow-up methods.  
THPPP018 Operation of the LHC at High Luminosity and High Stored Energy 3767
  • J. Wenninger, R. Alemany-Fernandez, G. Arduini, R.W. Assmann, B.J. Holzer, E.B. Holzer, V. Kain, M. Lamont, A. Macpherson, G. Papotti, M. Pojer, L. Ponce, S. Redaelli, M. Solfaroli Camillocci, J.A. Uythoven, W. Venturini Delsolaro
    CERN, Geneva, Switzerland
  In 2011 the operation of the Large Hadron Collider LHC entered its first year of high luminosity production at a beam energy of 3.5 TeV. In the first months of 2011 the number of bunches was progressively increased to 1380, followed by a reduction of the transverse emittance, an increase of the bunch population and a reduction of the betatron function at the collision points. The performance improvements steps that were accumulated in 2011 eventually brought the peak luminosity to 3.6·1033 cm-2s−1. The integrated luminosity delivered to each of the high luminosity experiments amounted to 5.6 fb-1, a factor of 5 above the initial target defined in 2010. The operational experience with high intensity and high luminosity at the LHC will be presented here, together with the issues that had to be tackled on the road to high intensity and luminosity.