Author: Ranjan, K.
Paper Title Page
TUPPC010 Study of Effects of Failure of Beamline Elements and its Compensation in CW Superconducting Linac 1173
  • A. Saini, K. Ranjan
    University of Delhi, Delhi, India
  • C.S. Mishra, J.-F. Ostiguy, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
  Project-X is the proposed high intensity proton facility to be built at Fermilab in United States. First stage of the Project-X consists of H- superconducting linac (SC) which will be operated in continuous wave (CW) mode to accelerate the beam from kinetic energy of 2.1 MeV to 3 GeV. The operation in CW mode puts stringent tolerances on the beam line components, particularly at low energy section. The failure of beam line elements result in mismatch of the beam with the following sections due to different beam parameters than designed parameters. It makes the beam unstable which causes emittance dilution, and ultimately results in beam losses. In worst case, it can affect the reliability of the machine and may lead to the shutdown of the linac to replace the failed elements. Thus, it is important to study impacts of these effects and their compensation to restore linac performance to avoid beam interruption. This paper presents the studies performed for the failure of accelerating cavity and focusing magnets at the critical locations in the Project-X CW superconducting linac