Author: Rakhno, I.L.
Paper Title Page
MOPPD083 Improving the Fermilab Booster Notching Efficiency, Beam Losses and Radiation Levels 562
 
  • I.L. Rakhno, A.I. Drozhdin, N.V. Mokhov, V.I. Sidorov, I.S. Tropin
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Currently a fast vertical 1.08-m long kicker (notcher) located in the Fermilab Booster Long-5 straight section is used to remove 3 out of 84 circulating bunches after injection to generate an abort gap. With magnetic field of 72.5 Gauss it removes only 87% of the 3-bunch intensity at 400 MeV, with 75% loss on pole tips of the focusing Booster magnets, 11% on the Long-6 collimators, and 1% in the rest of the ring. We propose to improve the notching efficiency and reduce beam loss in the Booster by using two horizontal kickers in the Long-12 section. The STRUCT calculations show that using such horizontal notchers, one can remove up to 99% of the 3-bunch intensity at 400-700 MeV, directing 96% of it to a new beam dump at the Long-13 section. This fully decouples notching and collimation. The beam dump absorbs most of the impinging proton energy in its jaws. The latter are encapsulated into an appropriate radiation shielding that reduces impact on the machine components, personnel and environment to the tolerable levels. The MARS simulations show that corresponding prompt and residual radiation levels can be reduced ten times compared to the current ones.
 
 
MOPPD084 Optimization of Extinction Efficiency in the 8-GeV Mu2e Beam Line 565
 
  • I.L. Rakhno, A.I. Drozhdin, C. Johnstone, N.V. Mokhov, E. Prebys
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
A muon-to-electron conversion experiment at Fermilab is being designed to probe for new physics beyond the standard model at mass scales up to 10000 TeV*. The advance in experimental sensitivity is four orders of magnitude when compared to existing data on charged lepton flavor violation. The critical requirement of the experiment is the ability to deliver a proton beam contained in short 100-ns bunches onto a muon production target, with an inter-bunch separation of about 1700 ns. In order to insure the low level of background at the muon detector consistent with the required sensitivity, protons that reach the target between bunches must be suppressed by an enormous factor, 109. This paper describes the results of numerical modeling with STRUCT and MARS codes for a beam line with a collimation system**,*** and optics that achieves an experimental extinction factor of one per billion.
* R.M. Carey et al., Mu2e Proposal, Fermilab (2008).
** W. Molzon, “Proton Beam Extinction,” MECO-EXT-05-002 (2005).
*** E. Prebys, Mu2e-doc-534 (2009), http://mu2e-docdb.fnal.gov.
 
 
WEPPD034 Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab 2582
 
  • C.M. Baffes, M.D. Church, J.R. Leibfritz, S.A. Oplt, I.L. Rakhno
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy
A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility’s initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type RF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a Helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. In addition, the potential for radiation-induced degradation of the graphite is discussed.