Author: Prost, L.R.
Paper Title Page
MOPPR072 Fermilab PXIE Beam Diagnostics Development and Testing at the HINS Beam Facility 954
 
  • V.E. Scarpine, B.M. Hanna, V.A. Lebedev, L.R. Prost, A.V. Shemyakin, J. Steimel, M. Wendt
    Fermilab, Batavia, USA
 
  Funding: This work was supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359.
Fermilab is planning the construction of a prototype front end of the Project X linac. The Project X Injector Experiment (PXIE) is expected to accelerate 1 mA cw H beam up to 30 MeV. Some of the major goals of the project are to test a cw RFQ and H source, a broadband bunch-by-bunch beam chopper and a low-energy superconducting linac. The successful characterization and operation of such an accelerator places stringent requirements on beam line diagnostics. These crucial beam measurements include bunch currents, beam orbit, beam phase, bunch length, transverse profile and emittance, beam halo and tails, as well as the extinction performance of the broadband chopper. This paper presents PXIE beam measurement requirements and instrumentation development plans. Also presented are plans to test many of these instruments at the Fermilab High Intensity Neutrino Source (HINS) beam facility. Since HINS is already an operational accelerator, utilizing HINS for instrumentation testing allows for quicker development of the required PXIE diagnostics.
 
 
TUOBA01 Summary of Fermilab’s Recycler Electron Cooler Operation and Studies 1068
 
  • L.R. Prost, A.V. Shemyakin
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Fermilab’s Recycler ring was used as a storage ring for accumulation and subsequent manipulations of 8 GeV antiprotons destined for the Tevatron collider. To satisfy these missions, a unique electron cooling system was designed, developed and successfully implemented. The most important features that distinguish the Recycler cooler from other existing electron coolers are its relativistic energy (it employs a 4.3 MeV, 0.1 A DC electron beam), a weak continuous longitudinal magnetic field in the cooling section (~100 G), and lumped focusing elsewhere. With the termination of the collider operation at Fermilab, the cooler operation was also terminated. In this article, we will summarize the experience of commissioning, optimizing and running this unique machine over the 6 years of its existence.
 
slides icon Slides TUOBA01 [2.503 MB]  
 
WEPPD035 Design Considerations for an MEBT Chopper Absorber of 2.1MeV H at the Project X Injector Experiment at Fermilab 2585
 
  • C.M. Baffes, M.H. Awida, A.Z. Chen, Y.I. Eidelman, V.A. Lebedev, L.R. Prost, A.V. Shemyakin, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy
The Project X Injector Experiment (PXIE) will be a prototype of the Project X front end that will be used to validate the design concept and decrease technical risks. One of the most challenging components of PXIE is the wide-band chopping system of the Medium Energy Beam Transport (MEBT) section, which will form an arbitrary bunch pattern from the initially CW 162.5 MHz 5mA beam. The present scenario assumes diverting 80% of the beam to an absorber to provide a beam with the average current of 1mA to SRF linac. This absorber must withstand a high level of energy deposition and high ion fluence, while being positioned in proximity of the superconductive cavities. This paper discusses design considerations for the absorber, including specific challenges as spreading of energy deposition, management of temperatures and temperature-induced mechanical stresses, radiation effects, surface effects (sputtering and blistering), and maintaining vacuum quality. Thermal and mechanical analyses of a conceptual design are presented, and future plans for the fabrication and testing of a prototype are described.
 
 
THPPP062 The Six-Cavity Test - Demonstrated Acceleration of Beam with Multiple RF Cavities and a Single Klystron 3877
 
  • J. Steimel, J.-P. Carneiro, B. Chase, S. Chaurize, E. Cullerton, B.M. Hanna, R.L. Madrak, R.J. Pasquinelli, L.R. Prost, L. Ristori, V.E. Scarpine, P. Varghese, R.C. Webber, D. Wildman
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The High Intensity Neutrino Source (HINS) ‘Six-Cavity Test’ has demonstrated the use of high power RF vector modulators to control multiple RF cavities driven by a single high power klystron to accelerate a non-relativistic beam. Installation of 6 cavities in the existing HINS beamline has been completed and beam measurements have started. We present data showing the energy stability of the 7 mA proton beam accelerated through the six cavities from 2.5 MeV to 3.4 MeV.
 
 
THPPP092 Progress of the Front-End System Development for Project X at LBNL 3951
 
  • D. Li, M.D. Hoff, Q. Ji, A.R. Lambert, T. Schenkel, J.W. Staples, S.P. Virostek
    LBNL, Berkeley, California, USA
  • S. Nagaitsev, L.R. Prost, G.V. Romanov, A.V. Shemyakin
    Fermilab, Batavia, USA
  • C. Zhang
    IAP, Frankfurt am Main, Germany
 
  Funding: This work is supported by the Office of Science, United States Department of Energy under DOE contract DE-AC02-05CH11231.
A multi-MW proton facility, Project X has been proposed and is currently under development at Fermilab. Project X is a key accelerator complex for intensity frontier of future high energy physics programs in the US. In collaboration with Fermilab, LBNL takes the responsibility in the development and design studies of the front-end system for Project X. The front-end system would consist of H ion source(s), low-energy beam transport (LEBT), 162.5 MHz normal conducting CW Radio-Frequency-Quadrupole (RFQ) accelerator, medium-energy beam transport (MEBT), and beam chopper(s). In this paper, we will review and present recent progress of the front-end system studies, which will include the RFQ beam dynamics design, RF structure design, thermal and mechanical analyses and fabrication plan, LEBT simulation studies and concept for LEBT chopper.