Author: Ponton, A.
Paper Title Page
MOPPD076 Numerical Study of a Collimation System to Mitigate Beam Losses in the ESS Linac 541
 
  • R. Miyamoto, H. Danared, M. Eshraqi, A. Ponton
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) will be a 5 MW proton linac to produce spallation neutrons. A high power linac has a very low tolerance on beam losses, typically on the order of 1 W/m, to avoid activation of the linac components; hence, emittance and halo of the beam must be well controlled throughout the linac. A system of collimators in beam transport sections has been studied and tested as a means to mitigate the beam losses in several linacs. This paper presents the result of a numerical study of a collimation system for the ESS linac.  
 
THPPP085 End to End Beam Dynamics of the ESS Linac 3933
 
  • M. Eshraqi, H. Danared, A. Ponton
    ESS, Lund, Sweden
  • I. Bustinduy
    ESS Bilbao, Bilbao, Spain
  • L. Celona
    INFN/LNS, Catania, Italy
  • M. Comunian
    INFN/LNL, Legnaro (PD), Italy
  • A.I.S. Holm, S.P. Møller, H.D. Thomsen
    ISA, Aarhus, Denmark
  • J. Stovall
    CERN, Geneva, Switzerland
 
  The European Spallation Source, ESS, uses a linear accelerator to deliver a high intensity proton beam to the target station. The nominal beam power on target will be 5~MW at an energy of 2.5~GeV. We briefly describe the individual accelerating structures and transport lines through which we have carried out multiparticle beam dynamics simulations. We will present a review of the beam dynamics from the source to the target.