Author: Pichler, B.
Paper Title Page
WEPPD082 Characterization of Photocathode Damage during High Current Operation of the Cornell ERL Photoinjector 2717
  • J.M. Maxson, S.S. Karkare
    Cornell University, Ithaca, New York, USA
  • I.V. Bazarov, S.A. Belomestnykh, L. Cultrera, D.S. Dale, J. Dobbins, B.M. Dunham, K. Finkelstein, R.P.K. Kaplan, V.O. Kostroun, Y. Li, X. Liu, F. Löhl, B. Pichler, P. Quigley, D.H. Rice, K.W. Smolenski, M. Tigner, V. Veshcherevich, Z. Zhao
    CLASSE, Ithaca, New York, USA
  The Cornell ERL Photoinjector prototype has recently demonstrated successful operation at 20 mA for 8 hours using a bi-alkali photocathode grown on a Si substrate. The photocathode film was grown off center, and remained relatively undamaged; however, upon removal from the gun, the substrate at the gun electrostatic center displayed significant visible damage. Here we will describe not only the parameters of that particular high current run, but a suite of post-operation surface morphology and crystallographic measurements, including X-ray fluorescence, X-ray diffraction, contact profilometry, scanning electron microscopy, performed about the damage site and photocathode film. The data indicate violent topological changes to the substrate surface, as well as significant induced crystallographic strain. Ion back-bombardment is proposed as a possible mechanism for damage, and a simple model for induced crystal strain is proposed (as opposed to ion induced sputtering), and is shown to have good qualitative agreement with the spatial distribution of damage.