Author: Pfingstner, J.
Paper Title Page
TUPPR028 Recent Improvements in the Orbit Feedback and Ground Motion Mitigation Techniques for CLIC 1876
 
  • J. Snuverink, J. Pfingstner, D. Schulte
    CERN, Geneva, Switzerland
 
  The Compact Linear Collider (CLIC) accelerator has strong stability requirements on the position of the beam. In particular, the beam position will be sensitive to ground motion. A number of mitigation techniques have been proposed - quadrupole stabilization and positioning, final doublet stabilization as well as beam based orbit and interaction point (IP) feedback. Integrated studies of the impact of ground motion on the CLIC Main Linac (ML) and Beam Delivery System (BDS) that model the latest hardware designs have been performed. Furthermore, additional imperfections have been introduced and the robustness of this system is discussed in detail. The possibility of using ground motion measurements as an alternative to the quadrupole stabilization is investigated.  
 
TUPPR029 Performance of Linear Collider Beam-Based Alignment Algorithms at FACET 1879
 
  • A. Latina, J. Pfingstner, D. Schulte
    CERN, Geneva, Switzerland
  • E. Adli
    University of Oslo, Oslo, Norway
 
  The performance of future linear colliders will depend critically on beam-based alignment (BBA) and feedback systems, which will play a crucial role both in the linear and in the non-linear systems of such machines, e.g., the linac and the final-focus. Due to its characteristics, FACET is an ideal test-bench for BBA algorithms and linear collider beam-dynamics in general. We present the results of extensive computer simulations and their experimental verification.  
 
TUPPR060 Detection of Ground Motion Effects on the Beam Trajectory at ATF2 1954
 
  • Y. Renier, J. Pfingstner, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
 
  The ATF2 experiment is currently demonstrating the feasibility of the beam delivery system for the future linear collider. The tunning is very critical to obtain the nanometer vertical beam size at the interaction point and in the case of CLIC, ground motion effects on the beam must be corrected. In this respect, as a proof of principle of a ground motion feed forward, the ground motion effects on the beam trajectory are extracted from the beam position monitor readings.