Author: Park, S.
Paper Title Page
TUPPD076 Photocathode Studies for the SPEAR3 Injector RF Gun 1575
 
  • S. Park, W.J. Corbett, S.M. Gierman, J.R. Maldonado
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy Contract DE-AC03- 76SF00515 and Office of Basic Energy Sciences, Division of Chemical Sciences.
The electron gun for the SPEAR3 injector operates with a warm thermionic dispenser cathode immersed in a 1.5-cell RF structure. At each injection cycle the gun accelerates several thousand electron bunches up to ~3 MeV during a 2.5us rf pulse. The individual bunches are then compressed by an alpha magnet and a traveling-wave chopper selects 3-5 bunches so they don’t cause beam loading to the linac, where the accelerated bunches reach 120 MeV for subsequent capture in a single booster synchrotron bucket. Tests are underway to operate the dispenser cathode as a cold electron photo-emitter driven by an external laser system. Eventually, without the copper, this will enable multi-bunch injections to the Booster and SPEAR3. In parallel, tests are underway to evaluate quantum efficiency and beam emittance for a beam emitted from a CsBr photocathode with ns- and ps-pulses of UV laser light. In this paper we report on both the cold cathode electron gun operation studies for SPEAR3 and the CsBr research aimed at developing advanced cathode materials for future applications.
 
 
TUPPD077 SPEAR3 Booster RF System Upgrade: Performance Requirements and Evaluation of Resources 1578
 
  • S. Park, W.J. Corbett, R.O. Hettel, J.F. Schmerge, J.J. Sebek, J.W. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy Contract DE-AC03-76SF00515 and Office of Basic Energy Sciences, Division of Chemical Sciences.
The SPEAR2 accelerator system originally had 3 RF stations (2 for storage ring, 1 Booster) operating at 358.5 MHz. SPEAR3 now operates at 476.3 MHz with PEP-II type RF system, while the Booster RF frequency remains unchanged. For top-off operation, the Booster injects single 3.0 GeV electron bunches into SPEAR3 at 10 Hz every 5 minutes to replenish lost charge. Due to the frequency mismatch between SPEAR3 and the Booster, only one SPEAR3 bucket can injected per shot limiting injection rate and overall system flexibility. The aging high-power RF subsystems of the Booster pose a reliability issue as well. In order to remove these constraints, studies are underway to replace the Booster RF system using the PEP-II type RF system as a baseline. The new Booster RF system will be tuned to 475.036 MHz, and phase-locked to the SPEAR3 RF system. The project calls for ramping the Booster cavity gap voltage to 0.80 MV at 10 Hz, each with a 40 ms acceleration interval. With very low beam loading and low average RF power, there are many subsystems that can be operationally simplified. In this paper we present the results of analysis leading to a new Booster RF system.