Author: Park, B.-S.
Paper Title Page
WEPPD033 Design of 100 MeV Proton Beam Irradiation Facility for the PEFP 100 MeV Linac 2579
 
  • S.P. Yun, Y.-S. Cho, J.-H. Jang, H.S. Kim, H.-J. Kwon, B.-S. Park, K.T. Seol, Y.-G. Song
    KAERI, Daejon, Republic of Korea
 
  Funding: This work is supported by the Ministry of Education, Science and Technology of the Korean Government.
The Proton Engineering Frontier Project (PEFP) will install a 100-MeV proton linear accelerator at Gyeong-ju site. Two target rooms ( TR 103, TR 23) will be prepared in the beam commissioning stage for 20-MeV and 100-MeV proton beams, respectively. To design the irradiation equipment in TR 103, we have investigated general propagation shape and spatial distribution of proton beam by using Monte carlo method, when 100 MeV proton beam extracted from vacuum in the beam lines through beam window. On the basis of this result, we have designed beam irradiation components and their configuration. The beam irradiation facility consists of beam dump, support frame, sample support and beam current monitor. To minimize residual radioactivity induced by incident proton beam, the graphite was selected as the material of beam dump and the aluminum alloy was selected as material of other irradiation equipment. These residual radioactivity of equipment were estimated by Monte carlo method. In this paper, the details of this irradiation equipment design are presented.
 
 
WEPPP086 Positioning the 100MeV Linac and Magnets with Two Laser Trackers 2912
 
  • B.-S. Park, Y.-S. Cho, J.-H. Jang, D.I. Kim, H.S. Kim, H.-J. Kwon, J.Y. Ryu, K.T. Seol, Y.-G. Song, S.P. Yun
    KAERI, Daejon, Republic of Korea
 
  Funding: * This work is supported by the Ministry of Education, Science and Technology of the Korean Government.
Proton Engineering Frontier Project(PEFP) is developing a 100MeV high-duty-factor proton linac and 10 beam lines. The total length of PEFP linac is about 80m and each beam line is about 30m in length. The reference points were set up on the wall of the tunnel in the lst floor, the klystron gallery in the 2nd floor and the modulator gallery in the 3rd floor to built a survey network. Before the beam commissioning, the accelerator components and beam line magnets have been positioned within the tolerance limit by using two laser tracker systems. In this paper, the schemes for the alignment and the network survey are presented together with the results.
 
 
THPPP043 Installation of 100-MeV Proton Linac for PEFP 3832
 
  • Y.-S. Cho, S. Cha, J.S. Hong, J.-H. Jang, D.I. Kim, H.S. Kim, H.-J. Kwon, B.-S. Park, J.Y. Ryu, K.T. Seol, Y.-G. Song, S.P. Yun
    KAERI, Daejon, Republic of Korea
 
  Funding: This work was supported by the Ministry of Education, Science and Technology of the Korean Government.
The Proton Engineering Frontier Project (PEFP) at Korea Atomic Energy Research Institute (KAERI) is developing a 100-MeV proton linac in order to supply 20-MeV and 100-MeV proton beams to users for proton beam application. The linac consists of a 50-keV injector, a 3-MeV radio frequency quadrupole (RFQ) and a 100-MeV drift tube linac (DTL). The operation of the 20-MeV part of linac at Daejeon site was finished on November 2011. It was disassembled and moved to the Gyeongju site for installation as a low energy part of the linac. We completed the fabrication and test of the accelerating structures. The installation of the proton linac started in December 2011 at the new project site. The user service is scheduled for 2013 through the beam commissioning in 2012. This work summarized the installation status of the proton linac.
 
 
THPPP045 Five Year Operation of the 20-MeV Proton Accelerator at KAERI 3838
 
  • H.-J. Kwon, Y.-S. Cho, J.-H. Jang, D.I. Kim, H.S. Kim, B.-S. Park, J.Y. Ryu, K.T. Seol, Y.-G. Song, S.P. Yun
    KAERI, Daejon, Republic of Korea
 
  Funding: This work was supported by the Ministry of Science and Technology of the Korean Government.
A 20-MeV proton linear accelerator has been operating since 2007 by Proton Engineering Frontier Project (PEFP) at Korea Atomic Energy Research Institute (KAERI), Daejeon site. The performance test of the accelerator itself has been done with limited operating conditions. In addition, the 20-MeV accelerator was used as a test bench of the 100-MeV accelerator components. Besides the machine study itself, it supplied proton beams to more than 1600 samples for users. The 20-MeV accelerator was disassembled at the end of 2011 and will be installed at Gyeong-Ju site as an injector for the 100-MeV linac in 2012. In this paper, the 5 year operation experiences of the 20-MeV linac at Daejeon site are summarized and the technical issues are discussed.
 
 
THPPR035 Design of Machine Protection System for the PEFP 100MeV Linac 4047
 
  • K.T. Seol, Y.-S. Cho, J.-H. Jang, D.I. Kim, H.S. Kim, H.-J. Kwon, B.-S. Park, J.Y. Ryu, Y.-G. Song, S.P. Yun
    KAERI, Daejon, Republic of Korea
 
  Funding: * This work is supported by the Ministry of Education, Science and Technology of the Korean Government.
The 100MeV proton linear accelerator of the Proton Engineering Frontier Project (PEFP) has been developed and will be installed in Gyeong-ju site. After the installation, the beam commissioning of the 100MeV linac will be performed in 2012. A machine protection system (MPS) to shut off beam and to protect the 100MeV machine has been designed. Hardwares for an RF interlock, a modulator interlock, beam loss monitors, fast closing valves for vacuum window faults and so on have been manufactured and tested. With a hard-wired protection for a fast interlock, beam should be shut off within a few μs from the faults. The operator interface for MPS has been also designed to monitor and reset the faults easily. The details of the MPS design for the 100MeV machine are presented.