Author: Nishimura, H.
Paper Title Page
MOPPC086 Accelerator Simulation - Beyond High Performance Computing 340
 
  • S. James, G.M. Jung, B.C. Li, K. Muriki, H. Nishimura, Y. Qin, K. Song, C. Sun
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Accelerator modeling and simulation studies heavily rely on High Performance Computing (HPC). Public Cloud computing has opened a new service horizon for HPC by offering an on-demand, Virtual Private Cloud (VPC). Previously, we investigated using Amazon HPC public Cloud for lattice optimization applications and evaluated performance*. In this research, we use the Amazon VPC technology to extend local HPC resources to provide a seamless, hybrid, and secure environment when the demand for computing capacity spikes.
* C. Sun et al., "HPC Cloud Applied to Lattice Optimization," Proc. PAC2011, New York, WEP151, p. 1767 (2011).
 
 
TUPPP037 Status of the ALS Brightness Upgrade 1692
 
  • C. Steier, B.J. Bailey, A. Biocca, A.T. Black, D. Colomb, N. Li, A. Madur, S. Marks, H. Nishimura, G.C. Pappas, S. Prestemon, D. Robin, S.L. Rossi, T. Scarvie, D. Schlueter, C. Sun, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The Advanced Light Source (ALS) at Berkeley Lab while one of the earliest 3rd generation light sources remains one of the brightest sources for sof x-rays. Another multiyear upgrade of the ALS is currently under way, which includes new and replacement x-ray beamlines, a replacement of many of the original insertion devices and many upgrades to the accelerator. The accelerator upgrade that affects the ALS performance most directly is the ALS brightness upgrade, which will reduce the horizontal emittance from 6.3 to 2.2 nm (2.6 nm effective). This will result in a brightness increase by a factor of three for bendmagnet beamlines and at least a factor of two for insertion device beamlines. Magnets for this upgrade are currently under production and will be installed later this year.
 
 
TUPPP038 Electron Beam Collimation for the Next Generation Light Source 1695
 
  • C. Steier, P. Emma, H. Nishimura, C. F. Papadopoulos, F. Sannibale
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the conceptual design of the collimator system, as well as the results of simulations to test its effectiveness.
 
 
WEPPP075 Hyper-V Virtualization at ALS High Level Accelerator Control 2885
 
  • C.M. Ikami, T.N. Kellogg, C. Lam, H. Nishimura, G.J. Portmann
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
In an effort to virtualize a windows-based computing infrastructure utilized by the ALS high-level controls system, Microsoft 2008 R2 servers were employed for support of the control room console stations. The Windows 2008 R2 server roles were used to create Hyper-V consoles, streamline console deployment, maintain security updates and other support services behind a secure network filter. In the current phase, the aim is to adopt a cluster-based configuration to provide efficient use of server resources and failover capabilities to multiple virtual machines. The current work will discuss the methods and findings from this study.
 
 
TUPPP070 Next Generation Light Source R&D and Design Studies at LBNL 1762
 
  • J.N. Corlett, B. Austin, K.M. Baptiste, D.L. Bowring, J.M. Byrd, S. De Santis, P. Denes, R.J. Donahue, L.R. Doolittle, P. Emma, D. Filippetto, G. Huang, T. Koettig, S. Kwiatkowski, D. Li, T.P. Lou, H. Nishimura, H.A. Padmore, C. F. Papadopoulos, G.C. Pappas, G. Penn, M. Placidi, S. Prestemon, D. Prosnitz, J. Qiang, A. Ratti, M.W. Reinsch, D. Robin, F. Sannibale, D. Schlueter, R.W. Schoenlein, J.W. Staples, C. Steier, C. Sun, T. Vecchione, M. Venturini, W. Wan, R.P. Wells, R.B. Wilcox, J.S. Wurtele
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
LBNL is developing design concepts for a multi-beamline soft x-ray FEL array powered by a superconducting linear accelerator, operating with a high bunch repetition rate of approximately one MHz. The cw superconducting linear accelerator is supplied by an injector based on a high-brightness, high-repetition-rate photocathode electron gun. Electron bunches are distributed from the linac to the array of independently configurable FEL beamlines with nominal bunch rates up to 100 kHz in each FEL, and with even pulse spacing. Individual FELs may be configured for different modes of operation, and each may produce high peak and average brightness x-rays with a flexible pulse format, and with pulse durations ranging from sub-femtoseconds to hundreds of femtoseconds. In this paper we describe conceptual design studies and optimizations. We describe recent developments in the design and performance parameters, and progress in R&D activities.