Author: Nelson, J.
Paper Title Page
MOOAB03 FACET First Beam Commissioning 46
  • G. Yocky, C.I. Clarke, W.S. Colocho, F.-J. Decker, M.J. Hogan, N. Lipkowitz, J. Nelson, P.M. Schuh, J.T. Seeman, J. Sheppard, H. Smith, T.J. Smith, M. Stanek, Y. Sun, J.L. Turner, M.-H. Wang, S.P. Weathersby, G.R. White, U. Wienands, M. Woodley
    SLAC, Menlo Park, California, USA
  Funding: Work supported by U.S. Department of Energy, Contract DE-AC02-76SF00515.
The FACET (Facility for Advanced aCcelerator Experimental Tests) facility at SLAC has been under Construction since summer 2010. Its goal is to produce ultrashort and transversely small bunches of very high intensity (20kA peak current) to facilitate advanced acceleration experiments like PWFA and DLA. In June of 2011 the first electron beam was brought into the newly constructed bunch-compression chicane. Commissioning work included restarting the linac and damping ring, verifying hardware, establishing a good beam trajectory, verifying the optics of the chicane, commissioning diagnostic devices for transverse and longitudinal bunch size, and tuning up the beam size and bunch compression. Running a high-intensity beam through the linac without BNS damping and with large energy spread is a significant challenge. Optical aberrations as well as wakefields conspire to increase beam emittance and the bunch compression is quite sensitive to details of the beam energy and orbit, not unlike what will be encountered in a linear-collider final-focusing system. In this paper we outline the steps we took while commissioning as well as the challenges encountered and how they were overcome.
slides icon Slides MOOAB03 [9.167 MB]  
TUEPPB015 Generation of Narrow-Band Coherent Tunable Terahertz Radiation using a Laser-Modulated Electron Beam 1146
  • M.P. Dunning, C. Hast, E. Hemsing, R.K. Jobe, D.J. McCormick, J. Nelson, T.O. Raubenheimer, K. Soong, Z.M. Szalata, D.R. Walz, S.P. Weathersby, D. Xiang
    SLAC, Menlo Park, California, USA
  Funding: Work supported by US DOE contract DE-AC02-76SF00515.
The technical layout and initial results of an experiment to generate narrow-band, coherent, tunable terahertz (THz) radiation through the down-conversion of the frequency of optical lasers using a laser-modulated electron beam are described. In this experiment a 120 MeV electron beam is first energy modulated by two lasers with different wavelengths. After passing through a dispersive section, the energy modulation is converted into a density modulation at THz frequencies. This density-modulated beam will be used to generate narrow-band THz radiation using a coherent transition radiator inserted into the beam path. The central frequency of the THz radiation can be tuned by varying the wavelength of one of the two lasers or the energy chirp of the electron beam. The experiment is being performed at the NLCTA at SLAC, and will utilize the existing Echo-7 beamline, where echo-enabled harmonic generation (EEHG) was recently demonstrated.