Author: Nagorny, B.
Paper Title Page
TUPPC039 Synchrotron Radiation Studies for a Ring-Ring LHeC Interaction Region and Long Straight Section 1248
  • L.N.S. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • R. Appleby
    UMAN, Manchester, United Kingdom
  • N.R. Bernard
    ETH, Zurich, Switzerland
  • O.S. Brüning, B.J. Holzer
    CERN, Geneva, Switzerland
  • M. Klein
    The University of Liverpool, Liverpool, United Kingdom
  • P. Kostka
    DESY Zeuthen, Zeuthen, Germany
  • B. Nagorny
    DESY, Hamburg, Germany
  The Large Hadron Electron Collider project is a proposal to study e-p and e-A interactions at the LHC. In the design for an electron synchrotron (alternative designs for a linac are also under development), a 60GeV e± beam is collided with a 7TeV LHC proton beam to produce TeV-scale collisions. Despite being much lower energy than the proton beam, the electron beam is high enough energy to produce significant amounts of synchrotron radiation (SR). This places strong constraints on beam optics and bending. In particular challenges arise with the complex geometry required by the long straight section (LSS) and interaction region (IR). This includes the coupled nature of the proton and electron optics, as SR produced by the electron beam must not be allowed to quench the superconducting proton magnets or create problems with beam-gas backgrounds. Despite this, the electron beam must be deflected significantly within the IR to produce sufficient separation from the proton beam.