Author: Muggli, P.
Paper Title Page
MOOAB01 A Proton-driven Plasma Wakefield Accelerator Experiment with CERN SPS Bunches 40
 
  • P. Muggli
    MPI, Muenchen, Germany
 
  Funding: Presented for the PDPWFA collaboration.
Existing relativistic proton (p+) bunches carry large amounts of energy (kJ) and are therefore attractive as drivers for plasma-based particle accelerators, such as the plasma wakefield accelerator or PWFA. However, short (~ps) p+ bunches capable of driving large amplitude (~GV/m) wakefields are not available today. It was recently proposed to use long (~300ps) p+ bunches self-modulated at the plasma wavelength by a transverse two-stream instability in a high-density (~1014-1015/cc) plasma to resonantly drive wakefields*. Based on this idea and on the long term prospect for short p+ bunches a p+-driven PWFA experimental program was proposed to study the acceleration of electrons to the TeV energy range. Initial experiments will use the 450GeV, 1-3·1011 p+ bunches from the CERN SPS and plasmas 5-10m in length. The wakefields will be sampled by an externally injected, low energy (10-20MeV) electron bunch that will gain energy in the GeV range. The experimental plan, as well as the expected results will be presented.
*N. Kumar et al., Phys. Rev. Lett. 104, 255003 (2010).
 
slides icon Slides MOOAB01 [19.595 MB]  
 
MOOAB02 First Results from the Electron Hose Instability Studies in FACET 43
 
  • E. Adli
    University of Oslo, Oslo, Norway
  • W. An, C.E. Clayton, C. Joshi, K.A. Marsh, W.B. Mori, N. Vafaei-Najafabadi
    UCLA, Los Angeles, California, USA
  • S. Corde, R.J. England, J.T. Frederico, S.J. Gessner, M.J. Hogan, S.Z. Li, M.D. Litos, Z. Wu
    SLAC, Menlo Park, California, USA
  • W. Lu
    TUB, Beijing, People's Republic of China
  • P. Muggli
    MPI, Muenchen, Germany
 
  Funding: This work is supported by the Research Council of Norway and U.S. Department of Energy under contract number DE-AC02-76SF00515.
We present the first results from experimental studies of the electron hose instability in the plasma-wakefield acceleration experiments at FACET. Theory and PIC simulations of an electron beam as it travels through a plasma indicate that hosing may lead to a significant distortion of the transverse phase space. The FACET dump line is equipped with a Cherenkov light based spectrometer which can resolve transverse motion as a function of beam energy. We compare the predictions from simulations and theory to the experimental results obtained.
 
slides icon Slides MOOAB02 [4.654 MB]  
 
WEPPP015 Generation and Characterization of 5-micron Electron Beam for Probing Optical Scale Structures 2753
 
  • M.G. Fedurin, M. Babzien, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • B.A. Allen
    USC, Los Angeles, California, USA
  • P. Muggli
    MPI, Muenchen, Germany
  • A.Y. Murokh
    RadiaBeam, Santa Monica, USA
 
  In recent years advanced acceleration technologies have progress toward combination of electron beam, laser and optical scale dielectric structures. In present paper described generation of the electron beam probe with parameters satisfied to perform test of such optical structures.  
 
WEPPP037 Experimental Study of Self Modulation Instability of ATF Electron Beam 2807
 
  • Y. Fang
    USC, Los Angeles, California, USA
  • M. Babzien, M.G. Fedurin, K. Kusche, R. Malone, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • W.B. Mori
    UCLA, Los Angeles, California, USA
  • P. Muggli
    MPI, Muenchen, Germany
  • L.O. Silva, J. Vieira
    Instituto Superior Tecnico, Lisbon, Portugal
 
  Funding: US. Department of Energy.
We demonstrate experimentally for the first time the self-modulation of a relativistic electron bunch in a plasma. This demonstration serves as a proof-of-principle test for the mechanisms of transverse self-modulation of particle bunches in plasmas. It indicates the possibility of using long electron or proton bunches as drivers for plasma based accelerators. The long (~5ps) bunch available at BNL-ATF is used in this experiment and in the particle-in-cell OSIRIS. We use the 2D version for cylindrically symmetric geometries. The energy of the beam particles is measured after the plasma exit in the experiment. The obvious energy gain and loss by electrons indicates the excitation of longitudinal wakefields, and hence of transverse focusing fields. Both simulations and experiments show that the electron beamlets are formed at the scale of the plasma wavelength, and the number of beamlets changes as the plasma density is varied. We also measured the variation in beam transverse size downstream from the plasma as well as the variations in coherent transition radiation energy to demonstrate the effect of transverse self–modulation.
 
 
WEPPP051 Excitation of Plasma Wakefields with Designer Bunch Trains 2828
 
  • P. Muggli
    MPI, Muenchen, Germany
  • B.A. Allen, Y. Fang
    USC, Los Angeles, California, USA
  • M. Babzien, M.G. Fedurin, K. Kusche, R. Malone, C. Swinson, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by US Department of Energy.
Plasma can sustain multi-GV/m longitudinal electric fields that can be used for particle acceleration. In the plasma wakefield accelerator, or PWFA, the wakefields are driven by a single or a train of electron bunches with length comparable to the plasma wavelength. A train of bunches resonantly driving the wakefields can lead to energy gain by trailing particles many times the energy of the incoming drive train particles (large transformer ratio). In proof-of-principle experiments at the Brookhaven National Laboratory Accelerator Test Facility, we demonstrate by varying the plasma density over four orders of magnitude, and therefore the accelerator frequency over two orders of magnitude (~100GHz to a few THz), that trains with ~ps period resonantly drive wakefields in ~1016/cc density plasmas. We also demonstrate energy gain by a trailing witness electron bunch that follows the drive train with a variable delay. Detailed experimental results will be presented.
 
 
WEPPP052 Self-modulation of Long Particle Bunches in Plasmas at SLAC 2831
 
  • P. Muggli
    MPI, Muenchen, Germany
  • Y. Fang
    USC, Los Angeles, California, USA
  • M.J. Hogan
    SLAC, Menlo Park, California, USA
  • W.B. Mori
    UCLA, Los Angeles, California, USA
  • L.O. Silva, J. Vieira
    IPFN, Lisbon, Portugal
 
  The transverse self-modulation (SM) of ultra-relativistic, long particle bunches can lead to the generation of large amplitude wakefields*. In this work we show that the physics of SM could be investigated with the long electron and positron bunches available at SLAC**. The propagation of SLAC electron and positron bunches in 1 meter plasmas was modeled with OSIRIS. 3D simulations reveal that hosing may limit SM, but that shaped bunches with a hard-cut front ensure that saturation of SM can be reached. Cylindrically symmetric simulations show that the blowout regime can be achieved using these shaped bunches. Accelerating gradients in excess of 20 GeV/m are generated, and up to 10 GeV energy gain and loss are observed in the simulations at the 1% charge level after one meter of plasma. Because the blowout regime is reached, positron driven wakes lead to accelerating gradients that can be less than half than those of electrons. Simulations results outlining the SM results expected with the SLAC-FACET beam parameters will be presented.
* N. Kumar et al., Phys. Rev. Lett. 104, 255003 (2010).
** J. Vieira et al., submitted (2011).
 
 
WEPPR050 Future Colliders Based on a Modulated Proton Bunch Driven Plasma Wakefield Acceleration 3039
 
  • G.X. Xia, A. Caldwell
    MPI-P, München, Germany
  • P. Muggli
    MPI, Muenchen, Germany
 
  Recent simulation shows that a self-modulated high energy proton bunch can excite large amplitude plasma wakefields and accelerate an external electron bunch to higher energies*. Based on this scheme, future colliders, either an electron-positron linear collider (e+e collider) or an electron-hadron collider (e.g. LHeC) can be conceived. In this paper, we discuss some key design issues for an e+e collider and a high energy LHeC collider, based on the existing infrastructure of the CERN accelerator complex.
* A. Caldwell, K. Lotov, Plasma wakefield acceleration with a modulated proton bunch, arXiv: 1105.1292 (2011).
 
 
WEPPR089 Experimental Progress: Current Filamentation Instability Study 3141
 
  • B.A. Allen, P. Muggli
    USC, Los Angeles, California, USA
  • M. Babzien, M.G. Fedurin, K. Kusche, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • J.L. Martins, L.O. Silva
    IPFN, Lisbon, Portugal
  • W.B. Mori
    UCLA, Los Angeles, California, USA
 
  Funding: Work supported by: National Science Foundation and US Department of Energy.
Current Filamentation Instability, CFI, is of central importance for the propagation of relativistic electron beams in plasmas. CFI has potential relevance to astrophysics, magnetic field and radiation generation in the afterglow of gamma ray bursts, and inertial confinement fusion, energy transport in the fast-igniter concept. An experimental study of this instability is underway at the Accelerator Test Facility, ATF, at Brookhaven National Laboratory with the 60MeV electron beam and centimeter length capillary discharge plasma. The experimental program includes the systematic study and characterization of the instability as a function of beam (charge, transverse and longitudinal profile) and plasma (plasma density) parameters. Specifically, the transverse beam profile is measured directly at the plasma exit using optical transition radiation from a thin gold-coated silicon window. Experimental results show the reduction of the beam transverse size and the appearance of multiple (1-4) filaments and are a function of the plasma density. We will present simulation and experimental results, provide discussion of these results and outline next steps in the experiment.