Author: Müller, G.J.
Paper Title Page
MOPPC006 90m Optics Studies and Operation in the LHC 130
  • H. Burkhardt, G.J. Müller, S. Redaelli, R. Tomás, G. Vanbavinckhove, J. Wenninger
    CERN, Geneva, Switzerland
  • S. Cavalier
    LAL, Orsay, France
  A high β* = 90 m optics was commissioned and used for first very forward physics operation in the LHC in 2011. The experience gained from working with this optics in 5 studies and operation periods in 2011 was very positive. The target β* = 90 m was reached by a de-squeeze from the standard 11 m injection and ramp optics on the first attempt and collisions and first physics results obtained in the second study. The optics was measured and corrected with good precision. The running conditions were very clean and allowed for measurements with roman pots very close to the beam.  
MOPPC016 Combined Ramp and Squeeze at the Large Hadron Collider 157
  • S. Redaelli, M. Lamont, G.J. Müller, R. Tomás, J. Wenninger
    CERN, Geneva, Switzerland
  • N. Ryckx
    EPFL, Lausanne, Switzerland
  In the first two years of operation of the CERN Large Hadron Collider (LHC), the betatron squeeze has been carried out at constant flat top energy of 3.5 TeV. Squeeze setting functions are separated from the energy ramp functions. This ensured a maximum flexibility during commissioning because stopping at all intermediate optics for detailed measurements was possible. In order to then improve the efficiency of the operational cycle, combining the ramp and squeeze has been considered. In this paper, the various possibilities for this scheme are reviewed, and proposals of optimized operational cycles with combined ramp and squeeze are presented for different energies. Results of beam tests are also discussed.  
MOPPD062 Aperture Measurements in the LHC Interaction Regions 508
  • S. Redaelli, M.C. Alabau Pons, R.W. Assmann, R. Bruce, M. Giovannozzi, G.J. Müller, M. Pojer, J. Wenninger
    CERN, Geneva, Switzerland
  The aperture of the LHC interaction regions is crucial for the LHC performance because it determines the smaller β* that can be achieved. The aperture has been measured at a maximum energy of 3.5 TeV and at different β* values, following optimized procedure to allow safe measurements at high energy. In this paper, the results of these aperture measurements, which are used as a reference for β* reach and crossing scheme estimates at the LHC interaction points, are presented.  
TUPPR068 The Achromatic Telescopic Squeezing Scheme: Basic Principles and First Demonstration at the LHC 1978
  • S.D. Fartoukh, R. De Maria, B. Goddard, W. Höfle, M. Lamont, G.J. Müller, L. Ponce, S. Redaelli, R.J. Steinhagen, M. Strzelczyk, R. Tomás, G. Vanbavinckhove, J. Wenninger
    CERN, Geneva, Switzerland
  • R. Miyamoto
    ESS, Lund, Sweden
  The Achromatic Telescopic Squeezing (ATS) scheme [1] is a novel squeezing mechanism enabling the production of very low β* in circular colliders. The basic principles of the ATS scheme will be reviewed together with its strong justification for the High-Luminosity LHC Project. In this context, a few dedicated beam experiments were meticulously prepared and took place at the LHC in 2011. The results obtained will be highlighted, demonstrating already the potential of the ATS scheme for any upgrade project relying on a strong reduction of β*.
[1] S. Fartoukh, "An Achromatic Telescopic Squeezing (ATS) Scheme For The LHC Upgrade," IPAC'11, WEPC037, p. 2088 (2001).
TUPPR098 Comparison of LHC Collimator Beam-Based Alignment Centers to BPM-Interpolated Centers 2062
  • G. Valentino, N.J. Sammut
    University of Malta, Information and Communication Technology, Msida, Malta
  • R.W. Assmann, R. Bruce, G.J. Müller, S. Redaelli, A. Rossi, G. Valentino
    CERN, Geneva, Switzerland
  • L. Lari
    IFIC, Valencia, Spain
  The beam centers at the Large Hadron Collider collimators are determined by beam-based alignment, where both jaws of a collimator are moved in separately until a loss spike is detected on a Beam Loss Monitor downstream. Orbit drifts of more than a few hundred micrometers cannot be tolerated, as they would reduce the efficiency of the collimation system. Beam Position Monitors (BPMs) are installed at various locations around the LHC ring, and a linear interpolation of the orbit can be obtained at the collimator positions. In this paper, the results obtained from beam-based alignment are compared with the orbit interpolated from the BPM data throughout the 2011 LHC proton run. The stability of the orbit determined by collimator alignment during the run is evaluated.