Author: Mounet, N.
Paper Title Page
TUPPC086 Conceptual Design of the CLIC damping rings 1368
  • Y. Papaphilippou, F. Antoniou, M.J. Barnes, S. Calatroni, P. Chiggiato, R. Corsini, A. Grudiev, J. Holma, T. Lefèvre, M. Martini, M. Modena, N. Mounet, A. Perin, Y. Renier, G. Rumolo, S. Russenschuck, H. Schmickler, D. Schoerling, D. Schulte, M. Taborelli, G. Vandoni, F. Zimmermann
    CERN, Geneva, Switzerland
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • A. Bernhard
    KIT, Karlsruhe, Germany
  • M.J. Boland
    ASCo, Clayton, Victoria, Australia
  • A.V. Bragin, E.B. Levichev, S.V. Sinyatkin, P. Vobly, K. Zolotarev
    BINP SB RAS, Novosibirsk, Russia
  • M. Korostelev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • E. Koukovini
    EPFL, Lausanne, Switzerland
  • M.A. Palmer
    CLASSE, Ithaca, New York, USA
  • M.T.F. Pivi, S.R. Smith
    SLAC, Menlo Park, California, USA
  • R.P. Rassool, K.P. Wootton
    The University of Melbourne, Melbourne, Australia
  • L. Rinolfi
    JUAS, Archamps, France
  • A. Vivoli
    Fermilab, Batavia, USA
  The CLIC damping rings are designed to produce unprecedentedly low-emittances of 500 nm and 5 nm normalized at 2.86 GeV, in all beam dimensions with high bunch charge, necessary for the performance of the collider. The large beam brightness triggers a number of beam dynamics and technical challenges. Ring parameters such as energy, circumference, lattice, momentum compaction, bending and super-conducting wiggler fields are carefully chosen in order to provide the target emittances under the influence of intrabeam scattering but also reduce the impact of collective effects such as space-charge and coherent synchrotron radiation. Mitigation techniques for two stream instabilities have been identified and tested. The low vertical emittance is achieved by modern orbit and coupling correction techniques. Design considerations and plans for technical system, such as damping wigglers, transfer systems, vacuum, RF cavities, instrumentation and feedback are finally reviewed.  
WEPPR069 Measurements and Simulations of Transverse Coupled-Bunch Instability Rise Times in the LHC 3087
  • N. Mounet, R. Alemany-Fernandez, W. Höfle, D. Jacquet, V. Kain, E. Métral, L. Ponce, S. Redaelli, G. Rumolo, R. Suykerbuyk, D. Valuch
    CERN, Geneva, Switzerland
  In the current configuration of the LHC, multibunch instabilities due to the beam-coupling impedance would be in principle a critical limitation if they were not damped by the transverse feedback. For the future operation of the machine, in particular at higher bunch intensities and/or higher number of bunches, one needs to make sure the coupled-bunch instability rise times are still manageable by the feedback system. Therefore, in May 2011 experiments were performed to measure those rise times and compare them with the results obtained from the LHC impedance model and the HEADTAIL wake fields simulation code. At injection energy, agreement turns out to be very good, while a larger discrepancy appears at top energy.