Author: Morris, A.O.
Paper Title Page
MOPPC038 Bethe-Heitler Muon Background at a Muon Collider 214
 
  • S.A. Kahn, M.A.C. Cummings, T.J. Roberts
    Muons, Inc, Batavia, USA
  • D. Hedin, A.O. Morris
    Northern Illinois University, DeKalb, Illinois, USA
  • J.F. Kozminski
    Lewis University, Romeoville, Illinois, USA
 
  Multi-TeV muon colliders are an important option for a future energy frontier lepton collider since synchrotron radiation in a circular machine is significantly less than that in an electron collider. For a muon collider with 750 GeV μ+μ− with 2×1012 μ per bunch we would expect 8.6×105 muon decays per meter for the two beams. Muon decays are the source of beam induced backgrounds that can affect the physics. These backgrounds include electrons from muon decays, synchrotron radiation from the decay electrons, hadrons produced by photo-nuclear interactions, coherent and incoherent beam-beam pair production and Bethe-Heitler muon production. This paper will describe a simulation of the B-H muon pair production in a muon collider. These muons can penetrate the collider ring magnets and shielding and possibly enter into the detector regions. The simulation tracks B-H muons produced from electromagnetic shower interactions in collider ring material in the range of ±200 m from the interaction point.