Author: Mikulec, B.
Paper Title Page
TUXA02 Upgrade Plans for the LHC Injector Complex 1010
 
  • R. Garoby, H. Damerau, S.S. Gilardoni, B. Goddard, K. Hanke, A.M. Lombardi, M. Meddahi, B. Mikulec, E.N. Shaposhnikova, M. Vretenar
    CERN, Geneva, Switzerland
 
  Challenging beams with much higher brightness than today are required for the LHC to achieve its high luminosity objective after the year 2020. It is the purpose of the LHC Injectors Upgrade (LIU) Project to achieve this result, consolidating and upgrading the existing set of ageing synchrotrons (PSB, PS and SPS), and using the new linac presently in construction (Linac4). The anticipated beam characteristics are described and compared to the known limitations in the different accelerators. The foreseen solutions are outlined as well as the planning for their implementation.  
slides icon Slides TUXA02 [72.367 MB]  
 
TUPPR091 Status of the 160 MeV H Injection into the CERN PSB 2041
 
  • W.J.M. Weterings, B. Balhan, E. Benedetto, J. Borburgh, C. Bracco, C. Carli, B. Goddard, K. Hanke, B. Mikulec, A. Newborough, R. Noulibos, J. Tan
    CERN, Geneva, Switzerland
 
  The 160 MeV H beam from the LINAC4 will be injected into the 4 superimposed rings of the PS Booster (PSB) with an new H charge-exchange injection system. This entails a massive upgrade of the injection region. The hardware requirements and constraints, the performance specifications and the design of the H injection region are described.  
 
THPPP011 Studies on a Wideband, Solid-state Driven RF System for the CERN PS Booster 3749
 
  • M.M. Paoluzzi, L. Arnaudon, N. Chritin, M. Haase, K. Hanke, B. Mikulec, T. Tardy
    CERN, Geneva, Switzerland
 
  In the framework of the LHC Injectors Upgrade project (LIU) the PS Booster (PSB) RF systems will undergo in depth consolidation and upgrade programs. The aim is increasing the extraction energy to 2 GeV and allowing reliable operations during next 25 years. Substantial improvements could come from the replacement of the existing narrowband, tuned systems covering the h=1 and h=2 frequency ranges (0.6 / 1.8 MHz and 1.2 / 3.6 MHz respectively) with wideband (0.5 / 4 MHz) Finemet® loaded cavities. The new system would be modular, allow multi-harmonic operation, use solid-state power stages and include fast RF feedback to compensate beam loading effects to some extent. A prove of principle system providing ≈3.0 kV accelerating voltage has been designed, constructed and installed in one of the PSB rings. This paper provides details on the design and measurements as well as information on the project status.