Author: Merminga, L.
Paper Title Page
MOOBC01 Electron Linac Photo-fission Driver for the Rare Isotope Program at TRIUMF 64
 
  • S.R. Koscielniak, F. Ames, R.A. Baartman, I.V. Bylinskii, Y.-C. Chao, D. Dale, R.J. Dawson, A. Koveshnikov, A. Laxdal, R.E. Laxdal, F. Mammarella, L. Merminga, A.K. Mitra, Y.-N. Rao, V.A. Verzilov, D. Yosifov, V. Zvyagintsev
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • D. Karlen
    Victoria University, Victoria, B.C., Canada
 
  The TRIUMF Advanced Rare Isotope Laboratory (ARIEL) is funded since 2010 June by federal and BC Provincial governments. In collaboration with the University of Victoria, TRIUMF is proceeding with construction of a new target building, connecting tunnel, rehabilitation of an existing vault to contain the electron linear accelerator, and a cryogenic compressor building. TRIUMF starts construction of a 300 keV thermionic gun, and 10 MeV Injector cryomodule (EINJ) in 2012; the designs being complete. The 25 MeV Accelerator Cryomodule will follow in 2013. TRIUMF is embarking on major equipment purchases and has signed contracts for 4K cryogenic plant and a 290kW CW klystron, and four 1.3 GHz Nb 9-cell cavities from a local Canadian supplier. Moreover, the low energy beam transport is under construction; and detailing of two intra-cryomodule beam transports has just begun. Procurements are anticipated in mid 2012 for (i) the entire facility quadrupole magnets, and (ii) the klystron's 600kW HV power supply.  
slides icon Slides MOOBC01 [4.852 MB]  
 
WEIC06 Accelerator R&D: Research for Science - Science for Society 2161
 
  • N.R. Holtkamp
    SLAC, Menlo Park, California, USA
  • S. Biedron, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • L. Boeh, J.E. Clayton, G. Zdasiuk
    VMS GTC, Palo Alto, California, USA
  • S.A. Gourlay, M.S. Zisman
    LBNL, Berkeley, California, USA
  • R.W. Hamm
    R&M Technical Enterprises, Pleasanton, California, USA
  • S. Henderson
    Fermilab, Batavia, USA
  • G.H. Hoffstaetter
    CLASSE, Ithaca, New York, USA
  • L. Merminga
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • S. Ozaki
    BNL, Upton, Long Island, New York, USA
  • F.C. Pilat
    JLAB, Newport News, Virginia, USA
  • M. White
    ANL, Argonne, USA
 
  In September 2011 the US Senate Appropriations Committee requested a ten-year strategic plan from the Department of Energy (DOE) that would describe how accelerator R&D today could advance applications directly relevant to society. Based on the 2009 workshop "Accelerators for America’s Future" an assessment was made on how accelerator technology developed by the nation’s laboratories and universities could directly translate into a competitive strength for industrial partners and a variety of government agencies in the research, defense and national security sectors. The Office of High Energy Physics, traditionally the steward for advanced accelerator R&D within DOE, commissioned a task force under its auspices to generate and compile ideas on how best to implement strategies that would help fulfill the needs of industry and other agencies, while maintaining focus on its core mission of fundamental science investigation.  
slides icon Slides WEIC06 [3.678 MB]