Author: Martini, M.
Paper Title Page
TUPPC086 Conceptual Design of the CLIC damping rings 1368
 
  • Y. Papaphilippou, F. Antoniou, M.J. Barnes, S. Calatroni, P. Chiggiato, R. Corsini, A. Grudiev, J. Holma, T. Lefèvre, M. Martini, M. Modena, N. Mounet, A. Perin, Y. Renier, G. Rumolo, S. Russenschuck, H. Schmickler, D. Schoerling, D. Schulte, M. Taborelli, G. Vandoni, F. Zimmermann
    CERN, Geneva, Switzerland
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • A. Bernhard
    KIT, Karlsruhe, Germany
  • M.J. Boland
    ASCo, Clayton, Victoria, Australia
  • A.V. Bragin, E.B. Levichev, S.V. Sinyatkin, P. Vobly, K. Zolotarev
    BINP SB RAS, Novosibirsk, Russia
  • M. Korostelev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • E. Koukovini
    EPFL, Lausanne, Switzerland
  • M.A. Palmer
    CLASSE, Ithaca, New York, USA
  • M.T.F. Pivi, S.R. Smith
    SLAC, Menlo Park, California, USA
  • R.P. Rassool, K.P. Wootton
    The University of Melbourne, Melbourne, Australia
  • L. Rinolfi
    JUAS, Archamps, France
  • A. Vivoli
    Fermilab, Batavia, USA
 
  The CLIC damping rings are designed to produce unprecedentedly low-emittances of 500 nm and 5 nm normalized at 2.86 GeV, in all beam dimensions with high bunch charge, necessary for the performance of the collider. The large beam brightness triggers a number of beam dynamics and technical challenges. Ring parameters such as energy, circumference, lattice, momentum compaction, bending and super-conducting wiggler fields are carefully chosen in order to provide the target emittances under the influence of intrabeam scattering but also reduce the impact of collective effects such as space-charge and coherent synchrotron radiation. Mitigation techniques for two stream instabilities have been identified and tested. The low vertical emittance is achieved by modern orbit and coupling correction techniques. Design considerations and plans for technical system, such as damping wigglers, transfer systems, vacuum, RF cavities, instrumentation and feedback are finally reviewed.  
 
THPPP008 The ELENA Project: Progress in the Design 3740
 
  • T. Eriksson, W. Bartmann, P. Belochitskii, H. Breuker, F. Butin, C. Carli, R. Kersevan, M. Martini, S. Maury, S. Pasinelli, G. Tranquille
    CERN, Geneva, Switzerland
  • W. Oelert
    Forschungszentrum Jülich GmbH, Institut fur Nuklearchemie (INC), Jülich, Germany
 
  The Extra Low ENergy Antiproton ring (ELENA) project started in June 2011 and is aimed at substantially increasing the number of antiprotons delivered to the Antiproton Decelerator (AD) physics community. ELENA will be a small machine that receives antiprotons from AD at 5.3 MeV kinetic energy and decelerates them further down to 100 keV. It will be equipped with an electron cooler to avoid beam losses during deceleration and to reduce beam phase space at extraction. Design work is progressing with emphasis on machine parameters and design as well as infrastructure, ring, transfer lines and vital subsystem design.