Author: Martinez, D.
Paper Title Page
MOPPR080 Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development 975
 
  • J.D. Gilpatrick, Y.K. Batygin, F. Gonzales, M.E. Gruchalla, V.G. Kutac, D. Martinez, C. Pillai, S. Rodriguez Esparza, J.D. Sedillo, B.G. Smith
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the U.S. Department of Energy.
The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how the cable plants can be simplified without generating unwanted noise currents. This paper will describe these beam development tests and show some resulting data.
 
 
MOPPR081 Wire Scanner Beam Profile Measurements for the LANSCE Facility 978
 
  • J.D. Gilpatrick, M.E. Gruchalla, D. Martinez, C. Pillai, S. Rodriguez Esparza, J.D. Sedillo, B.G. Smith
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the U.S. Department of Energy.
The Los Alamos Neutron Science Center (LANSCE) is replacing beam profile measurement systems, commonly known as Wire Scanners (WS’s). Using the principal of secondary electron emission, the WS measurement system moves a wire or fiber across an impinging particle beam, sampling a projected multi-bin distribution. Because existing WS actuators and electronic components are either no longer manufactured or home-built with antiquated parts, a new wire scanner beam profile measurement is being designed, fabricated, and tested. The goals for these new wire scanner include using off-the-shelf components while eliminating antiquated components, providing quick operation while allowing for easy maintainability, and tolerating external radioactivation. The WS measurement system consists of beam line actuators, a simple cable plant, an electronics processor chassis, and software located both in the electronics chassis (National Instruments LabVIEW) and in the Central Control Room (EPICS-based software). This WS measurement system will measure the more common H and H+ LANSCE-facility beams and will also measure less common beams. This paper describes these WS measurement systems.
 
 
MOPPR082 Wide-bandwidth Capture of Wire-scanner Signals 981
 
  • M.E. Gruchalla, J.D. Gilpatrick, D. Martinez, J.D. Sedillo
    LANL, Los Alamos, New Mexico, USA
 
  Funding: US Department of Energy.
Integrated charge collected on the sense wires of wire-scanner systems utilized to determine beam profile is generally the parameter of interest. The LANSCE application requires capturing the charge information macropulse-by-macropulse with macropulse lengths as long as 700us at a maximum macropulse rate of 120Hz. Also, for the LANSCE application, it is required that the integration be performed in a manner that does not require integrator reset between macropulses. Due to the long macropulse which must be accommodated and the 8.33ms minimum pulse period, a simple R-C integrator cannot be utilized since there is insufficient time between macropulses to allow the integrator to adequately recover. The application of wide-bandwidth to provide accurate pulse-by-pulse capture of the wire signals with digital integration of the wire signals to determine captured charge at each macropulse in applications with comparatively long macropulses and high pulse repetition rates is presented.
 
 
MOPPR084 Software Development for a CompactRIO-based Wire Scanner Control and Data Acquisition System 987
 
  • J.D. Sedillo, J.D. Gilpatrick, D. Martinez, S. Rodriguez Esparza
    LANL, Los Alamos, New Mexico, USA
  • M.E. Gruchalla
    URS, Albuquerque, New Mexico, USA
 
  Funding: U.S. Department of Energy
The Beam Diagnostics and Instrumentation Team at the Los Alamos Neutron Science Center is developing a wire scanner data acquisition and control system with a National Instrument’s compactRIO at its core. For this application, the compactRIO controller not only requires programming the FPGA and RT computer internal to the compactRIO, but also requires programming a client computer and a touch panel display. This article will summarize the hardware interfaces and describe the software design approach utilized for programming and interfacing the four systems together in order to fulfill the design requirements and promote reliable interoperability.