Author: Martin, I.P.S.
Paper Title Page
TUPPP028 A Study of Girder Alignment with Survey Measurements In the Diamond Storage Ring 1674
 
  • M. Apollonio, R. Bartolini, R.T. Fielder, W.J. Hoffman, J. Kay, I.P.S. Martin, B. Singh
    Diamond, Oxfordshire, United Kingdom
 
  Using a model of the Diamond storage ring which includes displacements and rotations of the 74 magnet girders an attempt has been made to correlate survey data with the corrector magnet (CM) strengths required for a zero orbit. We then use the model to deduce the most effective girder movements that will bring about a reduction in corrector strength. We describe the results of these studies, and suggest a test with a deliberately displaced girder and the effect on corrector strengths, aimed at enhancing our understanding of the system  
 
TUPPP031 Modelling the Steady-state CSR Emission in Low Alpha Mode at the Diamond Storage Ring 1677
 
  • I.P.S. Martin, C.A. Thomas
    Diamond, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  The CSR emitted by short electron bunches can be of a stable or bursting nature, with transition between the two states characterised by a threshold current that depends on various machine parameters. Key to understanding this process is to develop an effective model that describes the way the electron bunch interacts with impedance sources such as the CSR wakefield and surrounding vacuum chamber. In this paper we present the latest results of modelling the equilibrium distribution calculated using the Haissinski equation driven by different impedance models. The bunch lengthening with current, bunch profiles and CSR form factors derived from this model are compared to measured data for both positive and negative momentum compaction factor. Comparisons of the measured bursting thresholds to theoretical predictions are also discussed.  
 
TUPPP066 CLARA - A Proposed New FEL Test Facility for the UK 1750
 
  • J.A. Clarke, D. Angal-Kalinin, D.J. Dunning, S.P. Jamison, J.K. Jones, J.W. McKenzie, B.L. Militsyn, N. Thompson, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
  • I.P.S. Martin
    Diamond, Oxfordshire, United Kingdom
 
  A new single pass national FEL test facility, CLARA, is proposed to be constructed at Daresbury Laboratory in the UK. The aim of CLARA is to develop a normal conducting test accelerator able to generate longitudinally and transversely bright electron bunches and to use these bunches in the experimental production of stable, synchronized, ultra short photon pulses of coherent light from a single pass FEL with techniques directly applicable to the future generation of light source facilities. In addition the facility will be an ideal test bed for demonstrating innovative technologies such as high repetition rate normal conducting RF linacs and advanced undulator designs. This paper will describe the design of CLARA, pointing out the flexible features that will be incorporated to allow multiple novel FEL schemes to be proven.