Author: Marcouillé, O.
Paper Title Page
MOPPP062 Soleil Emittance Reduction using a Robinson Wiggler 702
 
  • H.B. Abualrob, P. Brunelle, M.-E. Couprie, O. Marcouillé, A. Nadji, L.S. Nadolski, R. Nagaoka
    SOLEIL, Gif-sur-Yvette, France
 
  For both synchrotron light sources as SOLEIL and colliders, the emittance is one of the key parameters to increase the photon brightness and the beam luminosity. In order to decrease the emittance, the ring optics is built on very focusing lattices leading to large chromaticities and potential reduction of the dynamics aperture and momentum transverse acceptance. Thus, some facilities have installed damping wigglers in zero dispersion straight sections to relax the optics and to reach sub-nanometer horizontal emittances. This solution requires however tens or hundreds meters of insertion devices. For storage ring equipped with zero-gradient bending magnets, an alternative solution can be given by installing a single Robinson wiggler [1] in a dispersive section enabling to divide the emittance by a factor 2. The uniqueness of this wiggler results from the presence of an alternated gradient superimposed the main periodic magnetic field. This paper recalls the concept of the wiggler, presents the expected gain for SOLEIL storage ring with the impact on the linear optics and the brightness. A preliminary magnetic design is also proposed. [1] K.W. Robinson, Phys. Rev, p. 373 (1958).