Author: Mahalingam, S.
Paper Title Page
MOPPC091 Parallel 3D Simulations to Support Commissioning of a Solenoid-based LEBT Test Stand 349
 
  • B.T. Schwartz, D.T. Abell, D.L. Bruhwiler, Y. Choi, S. Mahalingam, P. Stoltz, J. von Stecher
    Tech-X, Boulder, Colorado, USA
  • B. Han, M.P. Stockli
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work is supported by the US DOE Office of Science, Office of Basic Energy Sciences, including grant No. DE-SC0000844.
A solenoid-based low-energy beam transport (LEBT) test stand is under development for the Spallation Neutron Source (SNS). To support commissioning of the test stand, the parallel Vorpal framework is being used for 3D electrostatic particle-in-cell (PIC) simulations of H beam dynamics in the LEBT, including impact ionization physics and MHz chopping of the partially-neutralized \Hm beam. Here we describe the process of creating a partially-neutralized beam and examine the effects of a single chopping event on the beam's emittance.
 
 
THEPPB013 Progress in Modeling Arcs 3260
 
  • J. Norem, Z. Insepov
    ANL, Argonne, USA
  • S. Mahalingam, S.A. Veitzer
    Tech-X, Boulder, Colorado, USA
  • A. Moretti
    Fermilab, Batavia, USA
  • I. Morozov, G.E. Norman
    JIHT RAS, Moscow, Russia
 
  Funding: DOE Office of High Energy Physics.
We are continuing to extend and simplify our understanding of vacuum arcs. We believe that all the breakdown phenomena we see (with and without B fields) can be explained by: 1) fracture due to electrostatic forces at surface crack junctions, 2) the development of a unipolar arc driven by the cavity electric field, and 3) cooling, and cracking of the surface after the event is finished. Recent progress includes the evaluation of non-Debye sheaths using Molecular Dynamics, studies of sheath driven instabilities, a model of degradation of gradient limits in strong B fields, analysis of the variety of arcs that can occur in cavities and their damage and further studies of breakdown triggers.