Author: Ludwig, F.
Paper Title Page
MOOAC01 The European XFEL LLRF System 55
 
  • J. Branlard, G. Ayvazyan, V. Ayvazyan, M.K. Grecki, M. Hoffmann, T. Jeżyński, I.M. Kudla, T. Lamb, F. Ludwig, U. Mavrič, S. Pfeiffer, H. Schlarb, Ch. Schmidt, H.C. Weddig, B.Y. Yang
    DESY, Hamburg, Germany
  • P. Barmuta, S. Bou Habib, L. Butkowski, K. Czuba, M. Grzegrzółka, E. Janas, J. Piekarski, I. Rutkowski, D. Sikora, L. Zembala, M. Żukociński
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • W. Cichalewski, K. Gnidzińska, W. Jałmużna, D.R. Makowski, A. Mielczarek, A. Napieralski, P. Perek, A. Piotrowski, T. Pożniak, K.P. Przygoda
    TUL-DMCS, Łódź, Poland
  • S. Korolczuk, J. Szewiński
    The Andrzej Soltan Institute for Nuclear Studies, Centre Świerk, Świerk/Otwock, Poland
  • K. Oliwa, W. Wierba
    IFJ-PAN, Kraków, Poland
 
  The European X-ray free electron laser accelerator consists of 800 superconducting cavities grouped in 25 RF stations. The challenges associated with the size and complexity of this accelerator required a high-precision, modular and scalable low level RF (LLRF) system. TheμTCA technology (uTCA) was chosen to support this system and adapted for RF standards. State-of-the-art hardware development in close collaboration with the industry allowed for the system continuity and maintainability. The complete LLRF system design is now in its final phase and the designed hardware was installed and commissioned at FLASH. The uTCA hardware system, measurement results and system performance validation will be shown. Operational strategy and plans for future automation algorithms for performance optimization will also be presented in this paper.  
slides icon Slides MOOAC01 [12.188 MB]  
 
WEPPD049 Characterization of the Engineered Photodiode-based Fiber Link Stabilization Scheme for Optical Synchronization Systems 2627
 
  • T. Lamb, M.K. Bock, M. Felber, F. Ludwig, H. Schlarb, S. Schulz
    DESY, Hamburg, Germany
  • S. Jabłoński
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
 
  Pulsed optical synchronization systems are used in modern FELs like FLASH and will be used in the upcoming European XFEL. Their purpose is to distribute synchronization signals with femtosecond stability throughout the machine. Optical fibers are used to transport the pulses carrying the timing information to their end-stations. These fibers have to be continuously delay stabilized in order to achieve the desired precision. In this paper, a photodiode-based detector to measure the drifts of the fiber delay and allows their active correction is presented. Promising results from a first prototype setup of a photodiode-stabilized optical fiber link were the starting point for an engineering of this concept. An enclosure with free-space optics, fiber optics and integrated electronics for the detector, operating at 9.75 GHz, was designed. This unit includes all required parts to stabilize four fiber links. It allows to investigate the temperature sensitivity of the detector. Furthermore, results from drift measurements carried out with a two channel engineered detector are presented in this paper.