Author: Lindberg, R.R.
Paper Title Page
WEPPP072 Beam Characterization and Coherent Optical Transition Radiation Studies at the Advanced Photon Source Linac 2876
 
  • J.C. Dooling, R.R. Lindberg, N. Sereno, C.-X. Wang
    ANL, Argonne, USA
  • A.H. Lumpkin
    Fermilab, Batavia, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02-06CH11357.
The Advanced Photon Source facility includes a 450-MeV S-band linac with the option for injection from a photocathode (PC) rf gun. A diode-pumped, twice-frequency doubled Nd:glass regen laser (263 nm) is used with the Cu PC to generate the electron beams. Characterization of these beams and studies of the microbunching instability following beam compression in the four-dipole magnetic chicane are described. A suite of diagnostics is employed including a three-screen emittance section, a FIR coherent transition radiation autocorrelator, electron spectrometers, and an optical diagnostics end station. An energy chirp impressed on the beam is used to compress the 1-2 ps, rms bunch as it passes through the chicane. With compression, bunch lengths of 170-200 fs, rms at 450 pC are measured, and coherent optical transition radiation (COTR) due to the microbunching instability is observed. Mitigation techniques of the COTR in the beam profile diagnostics are demonstrated both spectrally and temporally. At 100 pC without compression normalized transverse emittances of 1.8 and 2.7 microns are observed in the x and y planes, in reasonable agreement with initial ASTRA simulations.
 
 
WEYB02
Hard X-ray Self-seeding at the Linac Coherent Light Source  
 
  • P. Emma, J.W. Amann, F.-J. Decker, Y.T. Ding, Y. Feng, J.C. Frisch, D. Fritz, J.B. Hastings, Z. Huang, J. Krzywinski, H. Loos, A.A. Lutman, H.-D. Nuhn, D.F. Ratner, J.A. Rzepiela, S. Spampinati, D.R. Walz, J.J. Welch, J. Wu, D. Zhu
    SLAC, Menlo Park, California, USA
  • W. Berg, R.R. Lindberg, D. Shu, Yu. Shvyd'ko, S. Stoupin, E. Trakhtenberg, A. Zholents
    ANL, Argonne, USA
  • V.D. Blank, S. Terentiev
    TISNCM, Troitsk, Russia
 
  Funding: Work supported by US Department of Energy, contract number DE-AC02-76SF00515.
We report on experimental results of FEL self-seeding with Angstrom wavelengths at the Linac Coherent Light Source (LCLS) at SLAC. The scheme, suggested at DESY*, replaces the 16th 4-m long undulator segment (out of 33 total) with a weak magnetic chicane and a diamond-based monochromator in Bragg transmission geometry. The monochromatized SASE FEL pulse from the first half of the undulator line then seeds the second half. This demonstration of hard x-ray self-seeding is shown to narrow the FEL bandwidth by a factor 40-50, allows longitudinally coherent x-ray pulses near the Fourier-transform limit, and may eventually allow an increases in peak brightness by 1-2 orders of magnitude after applying an aggressive undulator field taper.
* G. Geloni, V. Kocharyan, E. Saldin, DESY 10-133, Aug. 2010.
 
slides icon Slides WEYB02 [5.946 MB]