Author: Lin, F.-Y.
Paper Title Page
MOPPP077 Heat Load Budget on TPS Undulator in Vacuum 741
 
  • J.C. Huang, J. Chen, C.-S. Hwang, F.-Y. Lin, Y.T. Yu
    NSRRC, Hsinchu, Taiwan
 
  The performance of an insertion device is limited by the magnet gap because a small gap affects the dynamic aperture and results in a short life time of the beam. An in-vacuum undulator is designed to have no vacuum chamber between the magnet arrays so to allow the entire magnet gap to be fully used for the dynamic aperture. An in-vacuum undulator can optimally minimize the gap to achieve continuous energy spectra. One problem of an undulator with a small gap is resistive wall heating by the image current. The heat load depends strongly on the injected mode in the storage ring; injection of multiple bunches might deteriorate the thermal performance for the magnet array. In this paper, we present a calculation of the heat load budget for a magnet array of an in-vacuum undulator of Taiwan Photon Source (TPS).  
 
THPPD012 Measurement of Injection System of AC Septum Magnets for TPS Storage Ring 3521
 
  • F.-Y. Lin, C.-H. Chang, C.-S. Fann, C.-S. Hwang, C.S. Yang
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) is a 3 GeV third generation light source and will be operated in top-up injection mode. The leakage field of the septum magnet will dominate the injection performance. The septum magnets, parts of injection system, consist of AC and DC current mode magnets. The AC septum magnet were designed and constructed by NSRRC. In order to verify the magnetic field quality and the leakage field distribution, the search coil probe and the printed circuit technology for long coil probe measurement systems are developed and implemented for magnetic field measurement. This paper will describe the magnetic field measurement system, the magnetic field mapping results and the field shielding performance of AC septum magnet.  
 
THPPD014 Design and Performance of Various kinds of Corrector Magnets for the Taiwan Photon Source 3524
 
  • C.Y. Kuo, C.-H. Chang, M.-H. Huang, C.-S. Hwang, J.C. Jan, F.-Y. Lin
    NSRRC, Hsinchu, Taiwan
 
  Three types of DC corrector magnets will be installed in the booster ring (BR), LINAC to booster (LTB) and booster to storage ring (BTS) in the Taiwan photon source (TPS). These DC corrector magnets have different gap sizes, iron lengths and field strengths for different bending angles to optimize the electron beam. The DC magnetic fields are simulated by TOSCA 2D/3D static field analysis and optimum processes are discussed. An AC steering fast feedback corrector (FFC) combines horizontal and vertical dipole fields for the fast feedback correction in the storage ring (SR). The field variation with the alternating current in the 300Hz frequency of the FFC magnet is simulated by the Opera 3d ELEKTRA/SS analysis module to estimate the operating current. This paper will be presented about features, design concept and results of field measurement of these corrector magnets.
NSRRC, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
 
 
THPPD015 Character and Performance of Magnets for the TPS Storage Ring 3527
 
  • J.C. Jan, C.-H. Chang, H.-H. Chen, Y.L. Chu, C.-S. Hwang, C.Y. Kuo, F.-Y. Lin, C.S. Yang, Y.T. Yu
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is a third-generation light source. The orbit of the electron beam will be controlled with 48 dipoles, 240 quadrupoles, 168 sextupoles and several correctors in the storage ring. The construction of the first magnets for one sector, including prototype magnets, is to be completed during 2011 December. The mechanical dimensions of these magnets have been examined on a precise 3D-coordinate-measuring machine (CMM). The field strength, effective length and multipole errors were inspected with a rotating-coil measurement system (RCS) and a Hall-probe measurement system (HPS). The field center of the quadrupole and sextupole magnets is shimmed with a precise shimming block on the RCS bench. The inaccuracy of the position of the field center will be within 0.01 mm after shimming the feet. This work reports the current status, the construction performance, the mechanical shimming algorithm and the relative construction issue of the high precision magnet.