Author: Lepercq, P.
Paper Title Page
TUPPR012 Polarized Positron Source with a Compton Multiple Interaction Point Line 1834
 
  • I. Chaikovska, O. Dadoun, P. Lepercq, A. Variola
    LAL, Orsay, France
  • R. Chehab
    IN2P3 IPNL, Villeurbanne, France
 
  Positron sources are critical components of the future lepton colliders projects. This is essentially due to the high luminosity required, orders of magnitude higher than existing ones. In addition, polarization of the positron beam rather expands the physics research potential of the machine by increasing the precision of the measurements and enhancing certain types of interactions. In this framework, the Compton sources for polarized positron production are taken into account where the high energy gamma rays are produced by the Compton scattering and subsequently converted in the polarized electron-positron pairs in a target. The Compton multiple IP line is proposed as one of the solutions to increase the number of captured positrons. This allows a significant increase in the emitted gamma ray flux impinging on the target. The gamma ray production with the Compton multiple IPs line is simulated and used for polarized positron generation. Later, a capture section based on an adiabatic matching device followed by a pre-injector linac is simulated to capture and accelerate the positron beam. The results obtained are presented and discussed.  
 
TUPPR088 Baseline Design of the SuperB Factory Injection System 2032
 
  • S. Guiducci, A. Bacci, M.E. Biagini, R. Boni, M. Boscolo, D. Pellegrini, M.A. Preger, P. Raimondi, A.R. Rossi, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • M.A. Baylac
    LPSC, Grenoble, France
  • J. Brossard, S. Cavalier, O. Dadoun, T. Demma, P. Lepercq, E. Ngo Mandag, C. Rimbault, A. Variola
    LAL, Orsay, France
  • J.T. Seeman
    SLAC, Menlo Park, California, USA
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
 
  The injection complex of the SuperB, B-factory project of INFN consists of a polarized electron gun, a positron production system, electron and positron linac sections, a positron damping ring and the transfer lines connecting these systems and the collider main rings. To keep the ultra high luminosity nearly constant, continuous injection of 4 GeV electrons and 7 GeV positrons in both Low Energy Ring (LER) and High Energy Ring (HER) is necessary. In this paper we describe the baseline design and the beam dynamics studies performed to evaluate the system performance.