Author: LaPointe, M.A.
Paper Title Page
WEPPP011 Multi-Cavity Proton Cyclotron Accelerator: An Electron Counterpart 2744
 
  • M.A. LaPointe, S.V. Shchelkunov
    Yale University, Beam Physics Laboratory, New Haven, Connecticut, USA
  • J.L. Hirshfield
    Omega-P, Inc., New Haven, USA
  • V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: Supported by the Department of Energy, Office of Nuclear Physics.
A multi-cavity multi-frequency proton cyclotron accelerator has been proposed. It would utilize cyclotron resonance in each of eight cavities of uniformly diminishing frequency in a uniform magnetic field to comprise a compact (25 m) 1 GeV proton accelerator, according to simulation results*. A four cavity electron counterpart is under construction to test the mechanism of the multi-cavity setup, including phase acceptance, energy gain, and growth of energy spread and emittance for parameters equivalent to the proton case. The four electron counterpart cavities are driven by kW-level phase coherent RF sources at 1.5, 1.8, 2.1 and 2.4 GHz. Each cavity operates in the rotating TE111 mode and includes two feeds in quadrature to drive the rotating mode and two RF pickoffs for diagnostics. The electron beam source is a low-current gun with a BaO cathode which operates at -1200V and <50 microamps. After traversing the cavities, the beam is collected on either a Faraday cup or is imaged with a phosphor screen. Details of the setup and initial results from experiments with the four cavity electron counterpart will be presented.
* M.A. LaPointe, V.P. Yakovlev, S.Yu. Kazakov, and J.L. Hirshfield, Proc. of PAC 2009, May 4-8,Vancouver, BC, Canada, pp.3045-3047 (2011).
 
 
WEPPP012 High-Gradient THz-Scale Two-Channel Coaxial Dielectric-Lined Wakefield Accelerator 2747
 
  • S.V. Shchelkunov, M.A. LaPointe
    Yale University, Beam Physics Laboratory, New Haven, Connecticut, USA
  • J.L. Hirshfield, T.C. Marshall
    Omega-P, Inc., New Haven, USA
  • G.V. Sotnikov
    NSC/KIPT, Kharkov, Ukraine
 
  Funding: Research is supported by U.S. Department of Energy, Office of High Energy Physics.
A mm-scale THz Coaxial Dielectric Wakefield Accelerator structure is currently under study by Yale University Beam Physics Lab and collaborators for its performance with annular drive bunches. With our recent successful experiments with the cm-scale GHz rectangular module at AWA/Argonne (USA) and planned activity there with yet another cm-scale GHz coaxial structure, the program of new research has two objectives. The first is to design a structure to produce acceleration gradients approaching 0.35 GeV/m per each nC of drive charge when excited by an annular-like bunch; has an attractive feature that the drive and accelerated bunches both have good focusing and stability properties; and also exhibits a large transformer ratio. The second goal is to build and test the structure at FACET/SLAC (USA). At FACET the structure can be excited only with the available pencil-like drive bunch, but the reciprocity principle allows one to observe some of the properties that would be seen if the excitation were to be by an annular drive bunch. This presentation shows our latest findings, discusses related issues, and discusses our plans for experiments.
 
 
THPPC042 Modified Magnicon for High-Gradient Accelerator R&D 3377
 
  • S.V. Shchelkunov, Y. Jiang, M.A. LaPointe
    Yale University, Beam Physics Laboratory, New Haven, Connecticut, USA
  • J.L. Hirshfield
    Omega-P, Inc., New Haven, USA
  • V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: Research supported by the U.S. Department of Energy, Office of High Energy Physics
A self-consistent design is described of a modified 34.3 GHz magnicon amplifier with a TE311-mode output cavity, to replace the existing magnicon at Yale Beam Physics Lab Test Facility whose output cavity operates in the TM310 mode. The main goal for the new design is to achieve robust reliable operation. This is expected since tube performance – according to simulations – is largely insensitive to the magnitude of external dc magnetic fields, including imperfections in magnetic field profile; small changes in gun voltage and current; changes in electron beam radial size; and even poorly matched external circuitry. The new tube, as with its predecessor, is a third harmonic amplifier, with drive and deflection gain cavities near 11.424 GHz and output cavity at 34.272 GHz. The design calculations predict stable output of power of 20-27 MW at a 10 Hz repetition rate in pulses up to 1.3 μs long, with a low probability of breakdown in the output cavity because of low electric fields (less than 650 kV/cm).