Author: Kumaki, M.
Paper Title Page
MOOBA03 Development of a High-power Coherent THz Sources and THz-TDS System on the basis of a Compact Electron Linac 37
  • M. Kumaki, K. Sakaue, M. Washio
    RISE, Tokyo, Japan
  • R. Kuroda, H. Toyokawa, K. Yamada
    AIST, Tsukuba, Ibaraki, Japan
  The high-power terahertz time-domain spectroscopy (THz-TDS) has been developed on the basis of a compact S-band electron linac at AIST, Japan. It is strongly expected for inspection of dangerous materials in the homeland security field. The linac consists of a photocathode rf-gun, two acceleration tubes and a magnetic bunch compressor. The 40 MeV, 1 nC electron bunch is generated and compressed to less than 1 ps. THz radiations are generated in two methods with the ultra-short bunch. One is THz coherent synchrotron radiation (CSR). The other is THz coherent transition radiation (CTR). In the preliminary experiment, it was observed that the focused CTR had the donut profile in a transverse fields due to its initial radial polarization, so that it made Z-polarization. In case of the THz-TDS experiment, CTR was controlled to linearly polarization with the polarizer and focused to an EO crystal to obtain a THz temporal waveform which leads to THz spectrum with Fourier transform. The timing measurement between CTR and a probe laser was realized with OTR using a same optical photodiode. In this conference, we will describe details of our linac and results of the THz-TDS experiment.  
slides icon Slides MOOBA03 [3.342 MB]  
THPPR070 Development of Multi-collision Laser Compton Scattering X-ray Source on the Basis of Compact S-band Electron Linac 4139
  • R. Kuroda, M. Koike, E. Miura, Y. Taira, H. Toyokawa, K. Yamada, E. Yamaguchi
    AIST, Tsukuba, Ibaraki, Japan
  • M. Kumaki
    RISE, Tokyo, Japan
  A compact hard X-ray source via laser Compton scattering is required for biological, medical and industrial science because it has many benefits about generated X-rays such as short pulse, quasi-monochromatic, energy tunability and good directivity. Our X-ray source is conventionally the single collision system between an electron pulse and a laser pulse. To increase X-ray yields, we have developed a multi-collision system with a multi-bunch electron beam and a laser optical cavity. The multi-bunch electron beam has already been generated from a Cs-Te photocathode rf gun system using a multi-pulse UV laser. The laser optical cavity have developed like a regenerative amplification including the collision point between the electron pulse and the laser pulse which is based on the Ti:Sa laser with a mode-locked frequency of 79.33 MHz. In this preliminary experiment, the modulated seed laser pulses were generated and leaded to the cavity, so that laser build-up amplification was performed in the cavity length of 3.78 m with two seed pulses. In this conference, we will describe the results of preliminary experiments for the multi-collision system and future plans.