Author: Koratzinos, M.
Paper Title Page
TUPPR078 LEP3: A High Luminosity e+e Collider in the LHC Tunnel to Study the Higgs Boson 2005
 
  • F. Zimmermann, M. Koratzinos
    CERN, Geneva, Switzerland
  • A.P. Blondel
    DPNC, Genève, Switzerland
  • M. Zanetti
    MIT, Cambridge, Massachusetts, USA
 
  Recent indications from two LHC experiments suggest that the Higgs boson might be light, within the mass range 115-130 GeV. Such object could be studied at an e+e collider with about 240 GeV centre-of-mass energy. A corresponding Higgs factory – “LEP3” - could be installed in the LHC tunnel, reducing its cost and also allowing for a second life of the two LHC general-purpose detectors. We present preliminary accelerator and beam parameters for LEP3 tailored so as to provide a peak luminosity of 1034/cm2/s at each of two experiments, while respecting a number of constraints including beamstrahlung limits. At this luminosity around 20,000 Higgs events per year per experiment could be obtained for a Standard Model Higgs boson with a mass of 115-130 GeV. For the parameters considered the estimated luminosity lifetime is about 12 minutes, and the synchrotron radiation losses are 50 MW per beam. High operational efficiency requires two rings: a low emittance collider storage ring operating at constant energy, and a separate accelerator to top up the colliding beams every few minutes. The alternative of a larger ring collider installed in a new, bigger tunnel will also be discussed.  
 
THPPD031 Measurement of the Residual Resistivity Ratio of the Bus Bars Copper Stabilizer of the 13 kA Circuits of the LHC 3572
 
  • A. Apollonio, S.D. Claudet, M. Koratzinos, R. Schmidt, A.P. Siemko, M. Solfaroli Camillocci, J. Steckert, H. Thiesen, A.P. Verweij
    CERN, Geneva, Switzerland
 
  After the incident of September 2008, the operational beam energy of the LHC has been set to 3.5 TeV, since not all joints of the superconducting busbars between magnets have the required quality for 7 TeV operation. This choice is based on simulations to determine the safe current in the main dipole and quadrupole magnets, reproducing the thermal behavior of a quenched superconducting joint by taking into account all relevant factors that affect a possible thermal runaway. One important parameter of the simulation is the RRR (Residual Resistivity Ratio) of the copper stabilizer of the busbar connecting superconducting magnets. A dedicated campaign to measure this quantity for the main 13kA circuits of the LHC on all sectors was performed during the Christmas stop in December 2010 and January 2011. The measurement method as well as the data analysis and results are presented in this paper.