Author: Kolski, J.S.
Paper Title Page
WEPPR038 Independent Component Analysis (ICA) Applied to Long Bunch Beams in the Los Alamos Proton Storage Ring 3018
 
  • J.S. Kolski, R.J. Macek, R.C. McCrady, X. Pang
    LANL, Los Alamos, New Mexico, USA
 
  Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis (PCA), which is the BSS foundation of the well known model independent analysis (MIA), ICA is more robust to noise, coupling, and nonlinearity. ICA of turn-by-turn beam position data has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch and discuss the source signals identified as betatron motion and longitudinal beam structure.  
 
THPPP097 Diagnostic Pulse for Single-particle-like Beam Position Measurements During Accumulation/Production Mode in the Los Alamos Proton Storage Ring 3960
 
  • J.S. Kolski, S.A. Baily, E. Björklund, G.O. Bolme, M.J. Hall, S. Kwon, M.P. Martinez, M.S. Prokop, F.E. Shelley, P.A. Torrez
    LANL, Los Alamos, New Mexico, USA
 
  Beam position monitors (BPMs) are the primary diagnostic in the Los Alamos Proton Storage Ring (PSR). Injecting one turn, the transverse motion is approximated as a single particle with initial betatron position and angle (x0 and x0'). With single-turn injection, we fit the betatron tune, closed orbit (CO), and injection offset (x0 and x0' at the injection point) to the turn-by-turn beam position. In production mode, we accumulate multiple turns, the transverse phase space fills after 5 injections (horizontal and vertical fractional betatron tunes ~0.2) resulting in no coherent betatron motion, and only the CO may be measured. The injection offset, which determines the accumulated beam size and is very sensitive to steering upstream of the ring, is not measurable in production mode. We describe our approach and ongoing efforts to measure the injection offset during production mode by injecting a ‘‘diagnostic'' pulse ~50 us after the accumulated beam is extracted. We also study the effects of increasing the linac RF gate length to accommodate the diagnostic pulse on the production beam position, transverse size, and loss.