Author: Ko, C.
Paper Title Page
MOPPC096 Multiphysics Applications of ACE3P 361
 
  • K.H. Lee, C. Ko, Z. Li, C.-K. Ng, L. Xiao
    SLAC, Menlo Park, California, USA
  • G. Cheng, H. Wang
    JLAB, Newport News, Virginia, USA
 
  Funding: Work supported by US DOE Offices of HEP, ASCR and BES under contract AC02-76SF00515.
The TEM3P module of ACE3P, a parallel finite-element electromagnetic code suite from SLAC, focuses on the multiphysics simulation capabilities, including thermal and mechanical analysis for accelerator applications. In this pa- per, thermal analysis of coupler feedthroughs to supercon- ducting rf (SRF) cavities will be presented. For the realistic simulation, internal boundary condition is implemented to capture RF heating effects on the surface shared by a di- electric and a conductor. The multiphysics simulation with TEM3P matched the measurement within 0.4%.
 
 
WEPPC068 Multipacting Simulation and Analysis for the FRIB β = 0.085 Quarter Wave Resonators using Track3P 2366
 
  • L. Ge, C. Ko, Z. Li
    SLAC, Menlo Park, California, USA
  • J. Popielarski
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by DOE Office of Science under Cooperative Agreement DE- SC0000661, DOE Contract No. DE-AC02-76SF00515, and used resources of NERSC supported by DOE Contract No. DE-AC02- 05CH11231.
The drive linac for the Facility for Rare Isotope Beams (FRIB) utilizes several types of low beta superconducting resonators to accelerate the ion beams from 0.3 MeV per nucleon to 200 MeV per nucleon. Multipacting is an issue of concern for such superconducting resonators as they have unconventional shapes. We have used the parallel codes Tack3P and Omega3P, developed at SLAC under the support of the DOE SciDAC program, to analyze the multipacting barriers of such resonators. In this paper, we will present the simulation results for the β(v/c) = 0.085 Quarter Wave Resonator (QWR) for the FRIB project. Experimental data will also be presented to benchmark with the simulation results.
 
 
WEPPC110 3D Simulations of Multipacting in the 56 MHz SRF Cavity 2477
 
  • Q. Wu, S.A. Belomestnykh
    BNL, Upton, Long Island, New York, USA
  • L. Ge, C. Ko, Z. Li, C.-K. Ng, L. Xiao
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE.
The 56 MHz SRF Quarter-Wave Resonator (QWR) is designed for RHIC as a storage cavity to improve the collider performance. 2D multipacting simulation has been done for the cavity alone. Ripples were added to the outer body of the cavity for multipacting suppression based on the simulation findings. During operation, there will be four higher order mode (HOM) couplers and a fundamental power coupler (FPC) inserted through the end ports of the cavity and a fundamental mode damper (FD) inserted through a special port on the outer body. All of these components will be exposed to high RF fields. In this presentation we compare 2D and 3D codes simulation results for multipacting in the cavity. We also report 3D simulation results for multipacting simulation at the couplers.