Author: Kato, S.
Paper Title Page
TUPPR064 Time-resolved Shielded-Pickup Measurements and Modeling of Beam Conditioning Effects on Electron Cloud Buildup at CesrTA 1966
 
  • J.A. Crittenden, Y. Li, X. Liu, M.A. Palmer, S. Santos, J.P. Sikora
    CLASSE, Ithaca, New York, USA
  • S. Calatroni, G. Rumolo
    CERN, Geneva, Switzerland
  • S. Kato
    KEK, Ibaraki, Japan
 
  Funding: Work supported by the US National Science Foundation PHY-0734867, PHY-1002467, and the U.S. Department of Energy DE-FC02-08ER41538.
The Cornell Electron Storage Ring Test Accelerator program includes investigations into electron cloud buildup in vacuum chambers with various coatings. Two 1.1-m-long sections located symmetrically in the east and west arc regions are equipped with BPM-like pickup detectors shielded against the direct beam-induced signal. They detect cloud electrons migrating through an 18-mm-diameter pattern of holes in the top of the chamber. A digitizing oscilloscope is used to record the signals, providing time-resolved information on cloud development. We present new measurements of the effect of beam conditioning on a newly-installed amorphous carbon coated chamber, as well as on a diamond-like carbon coating. The ECLOUD modeling code is used to quantify the sensitivity of these measurements to model parameters, differentiating between photoelectron and secondary-electron production processes.
 
 
MOPPD073 Development of Transportation System for Low Energy Electron Group 532
 
  • S. Kato
    Tohoku University, Graduate School of Science, Sendai, Japan
  • M. Kinsho, K. Yamamoto, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  There is a time that we want to measure the electron which occurred in the accelerator in the small situation of a noise. In that case, it is one method that we transport these electrons to the place distant form the accelerator where a noise is small. In order to realize that, development of transport line for low energy electrons is required. So, we start to develop transport line using solenoid magnets. We present status of development of this transportation system.  
 
MOPPD074 Localization of Large Angle Foil Scattering Beam Loss Caused by Multi-Turn Charge-Exchange Injection 535
 
  • S. Kato
    Tohoku University, Graduate School of Science, Sendai, Japan
  • H. Harada, S. Hatakeyama, J. Kamiya, M. Kinsho, K. Yamamoto, Y. Yamazaki, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  In the J-PARC RCS, the significant losses were observed at the branch of H0 dump line and the Beam Position Monitor which was put at the downstream of the H0 dump branch duct. These losses were caused by the large angle scattering of the injection and circulating beam at the charge exchange foil. To realize high power operation, we have to mitigate these losses. So, we started to develop a new collimation system in the H0 branch duct and installed in October 2011. In order to optimize this system efficiently, we primarily focused on the relative angle of collimator block from scattering particles. We simulated behavior of particles scattered by foil and produced by collimator block and researched most optimized position and angle of the collimator block. In this process, we devised the method of angular regulation of collimator block. We present the method of angular regulation and performance of this new collimation system.