Author: Kaluzny, J.
Paper Title Page
WEPPC041 Tests of SRF Deflecting Cavities at 2K 2300
 
  • J.D. Fuerst, D. Horan, J. Kaluzny, A. Nassiri, T.L. Smith, G. Wu
    ANL, Argonne, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357.
The Advanced Photon Source (APS) at Argonne National Laboratory (ANL) is developing 2.8-GHz deflecting-mode superconducting rf cavities in collaboration with Jefferson Lab as part of a major facility upgrade. On-site testing of these cavities requires a new cryostat capable of operation at 2.0 K or less. The APS has leveraged facilities and expertise within ANL’s Physics Division to upgrade an existing test stand for continuous operation at temperatures as low as 1.7 K. A new cryogenic feedbox was fabricated and mated to an existing liquid helium “bucket” dewar with 0.6-m inside diameter and 1-m working depth. The configuration allows continuous sub-λ operation using warm vacuum pumping and helium make-up from the Physics Division’s existing cryoplant at heat loads up to 50 W dynamic, plus 15 W measured static load at 2.0 K. A 2.8-GHz TWT-based rf station has been installed and commissioned, providing up to 275 W of rf power. We describe the cryogenic and rf performance of the system and provide examples of cavity test results.
 
 
WEPPC038 Status of the Short-Pulse X-ray Project at the Advanced Photon Source 2292
 
  • A. Nassiri, N.D. Arnold, T.G. Berenc, M. Borland, B. Brajuskovic, D.J. Bromberek, J. Carwardine, G. Decker, L. Emery, J.D. Fuerst, A.E. Grelick, D. Horan, J. Kaluzny, F. Lenkszus, R.M. Lill, J. Liu, H. Ma, V. Sajaev, T.L. Smith, B.K. Stillwell, G.J. Waldschmidt, G. Wu, B.X. Yang, Y. Yang, A. Zholents
    ANL, Argonne, USA
  • J.M. Byrd, L.R. Doolittle, G. Huang
    LBNL, Berkeley, California, USA
  • G. Cheng, G. Ciovati, P. Dhakal, G.V. Eremeev, J.J. Feingold, R.L. Geng, J. Henry, P. Kneisel, K. Macha, J.D. Mammosser, J. Matalevich, A.D. Palczewski, R.A. Rimmer, H. Wang, K.M. Wilson, M. Wiseman
    JLAB, Newport News, Virginia, USA
  • Z. Li, L. Xiao
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source Upgrade (APS-U) Project at Argonne will include generation of short-pulse x-rays based on Zholents’* deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. In collaboration with Jefferson Laboratory, we are prototyping and testing a number of single-cell deflecting cavities and associated auxiliary systems with promising initial results. In collaboration with Lawrence Berkeley National Laboratory, we are working to develop state-of-the-art timing, synchronization, and differential rf phase stability systems that are required for SPX. Collaboration with Advanced Computations Department at Stanford Linear Accelerator Center is looking into simulations of complex, multi-cavity geometries with lower- and higher-order modes waveguide dampers using ACE3P. This contribution provides the current R&D status of the SPX project.
* A. Zholents et al., NIM A 425, 385 (1999).