Author: Jowett, J.M.
Paper Title Page
MOPPC017 Causes and Solutions for Emittance Blow-Up During the LHC Cycle 160
  • M. Kuhn
    Uni HH, Hamburg, Germany
  • G. Arduini, B.J. Holzer, J.M. Jowett, V. Kain, F. Roncarolo, M. Schaumann, R. Versteegen, J. Wenninger
    CERN, Geneva, Switzerland
  Emittance measurements during the run 2011 indicated a blow-up of 20 % to 30 % from LHC injection to collisions. At the LHC design stage the total allowed emittance increase through the cycle was set to 7 %. One of the goals of the 2012 LHC run is therefore to understand and counteract the blow-up. Emittance growth measurements through the LHC cycle along with correlations with possible sources are presented in this paper. Solutions are proposed where possible. The emittance determination accuracy relies on the knowledge of the beam optics and on the present performance of the transverse profile monitors. Possible improvements of the diagnostics and of the related data analysis are also discussed.  
TUPPC037 Update on LHeC Ring-Ring Optics 1242
  • M. Fitterer
    KIT, Karlsruhe, Germany
  • O.S. Brüning, H. Burkhardt, B.J. Holzer, J.M. Jowett
    CERN, Geneva, Switzerland
  • M. Klein
    The University of Liverpool, Liverpool, United Kingdom
  An update of the LHeC Ring-Ring optics is presented which accounts for chromatic corrections and more flexibility in the tune adjustment.  
THPPP012 Performance of the CERN Heavy Ion Production Complex 3752
  • D. Manglunki, M. E. Angoletta, H. Bartosik, G. Bellodi, A. Blas, T. Bohl, C. Carli, E. Carlier, S. Cettour Cave, K. Cornelis, H. Damerau, I. Efthymiopoulos, A. Findlay, S.S. Gilardoni, S. Hancock, J.M. Jowett, D. Kuchler, S. Maury, M. O'Neil, Y. Papaphilippou, S. Pasinelli, R. Scrivens, G. Tranquille, B. Vandorpe, U. Wehrle, J. Wenninger
    CERN, Geneva, Switzerland
  The second LHC ion run took place at 1.38 A TeV/c per beam in autumn 2011; more than 100 inverse microbarns was accumulated by each of the experiments. In addition, the LHC injector chain delivered primary Pb and secondary Be ion beams to fixed target experiments in the North Area. This paper presents the current performance of the heavy ion production complex, and prospects to further improve it in the near future.