Author: Jain, P.
Paper Title Page
WEPPC113 Progress on the High-Current 704 MHz Superconducting RF Cavity at BNL 2486
 
  • W. Xu, S.A. Belomestnykh, I. Ben-Zvi, H. Hahn, P. Jain
    BNL, Upton, Long Island, New York, USA
  • C.M. Astefanous, M.D. Cole, J.P. Deacutis, D. Holmes
    AES, Medford, NY, USA
 
  Funding: This work was supported by Sotny Brook under contract No. DE-SC0002496 and Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE.
The 704 MHz high current superconducting cavity has been designed with consideration of both performance of fundamental mode and damping of higher order modes. A copper prototype cavity was fabricated by AES and delivered to BNL. RF measurements were carried out on this prototype cavity, including fundamental pass-band and HOM spectrum measurements, HOM studies using bead-pull setup, prototyping of antenna-type HOM couplers. The measurements show that the cavity has very good damping for the higher-order modes, which was one of the main goals for the high current cavity design. 3D cavity models were simulated with Omega3P code developed by SLAC to compare with the measurements. The paper describes the cavity design, RF measurement setups for the copper prototype, and presents comparison of the experimental results with computer simulations. The progress with the niobium cavity fabrication will also be described.
 
 
WEPPC112 Development of a Fundamental Power Coupler for High-Current Superconducting RF Cavity 2483
 
  • P. Jain
    Stony Brook University, Stony Brook, USA
  • S.A. Belomestnykh, I. Ben-Zvi, W. Xu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE and by the DOE grant DE-SC0002496 to Stony Brook University.
Brookhaven National Laboratory has undertaken a project to design a five-cell superconducting 703.75 MHz RF cavity for the Energy Recovery Linac (ERL) and the planned RHIC electron cooler. The earlier developed cavity, viz., the BNL1 is fed by a klystron using a co-axial Fundamental Power Coupler (FPC), which delivers 50 kW of cw RF power to the cavity. During the cavity operation, it has been observed that a 5 K cooling line intercept in the FPC introduces undesirable microphonics. A modification in the existing FPC has been planned to determine the feasibility of getting rid of the 5 K cooling line. The modified coupler will be incorporated in the newly designed, under construction BNL3 cavity. In order to accommodate this modification, peak microphonics of 12 Hz and 20 kW of cw RF power will be considered. This paper describes the design of the new FPC starting from the analysis of thermal profile along its length from first principles.