Author: Huang, H.
Paper Title Page
MOPPC024 Modelling of the AGS Using Zgoubi - Status 181
 
  • F. Méot, L. A. Ahrens, Y. Dutheil, J.W. Glenn, H. Huang, T. Roser, V. Schoefer, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  A computer model, based on the ray-tracing code Zgoubi, is being developed in view of on-line simulation of the RHIC injector AGS, and of beam and spin dynamics simulations and studies in the presence of the cold and warm helical partial snakes. A status of this work is given here.  
 
MOPPC025 RHIC Polarized Proton Operation in Run 12 184
 
  • V. Schoefer, L. A. Ahrens, A. Anders, E.C. Aschenauer, G. Atoian, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, A. Dion, K.A. Drees, W. Fischer, C.J. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, L.T. Hoff, H. Huang, R.L. Hulsart, A. Kirleis, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, F. Severino, D. Smirnov, K.S. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Successful RHIC operation with polarized protons requires meeting demanding and sometimes competing goals for maximizing both luminosity and beam polarization. In Run 12 we sought to fully integrate into operation the many systems that were newly commissioned in Run 11 as well as to enhance collider performance with incremental improvements throughout the acceleration cycle. For luminosity maximization special attention was paid to several possible source of emittance dilution along the injector chain, in particular to optical matching during transfer between accelerators. Possible sources of depolarization in the AGS and RHIC were also investigated including the effects of local coupling and low frequency (10 Hz) oscillations in the vertical equilibrium orbit during the RHIC ramp. The results of a fine storage energy scan made in an effort to improve store polarization lifetime are also reported in this note.  
 
TUXA03 Increasing the AGS Beam Polarization with 80 Tune Jumps 1015
 
  • V. Schoefer, L. A. Ahrens, M. Bai, E.D. Courant, W. Fu, C.J. Gardner, J.W. Glenn, H. Huang, F. Lin, A.U. Luccio, J.-L. Mi, J. Morris, P.J. Rosas, T. Roser, P. Thieberger, N. Tsoupas, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York, USA
 
  Vertical depolarizing resonances in the AGS are removed by partial Siberian snakes. These magnets move the stable spin direction and lead to horizontal depolarizing resonances. The tune jump quadrupole system increases the crossing rate for horizontal resonances by a factor of six. This presentation will review the fundamental mechanism of depolarizing resonances, the partial Siberian snake solution and describe recent experimental evidence at the AGS demonstrating improvements to beam polarization and the beam dynamics challenges posed by the tune jump.  
slides icon Slides TUXA03 [5.199 MB]  
 
TUPPC063 The AGS Synchrotron with Four Helical Magnets 1320
 
  • N. Tsoupas, H. Huang, W.W. MacKay, T. Roser, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
 
  Funding: *Work supported by the US Department of Energy.
The idea* of using two partial helical magnets was applied successfully to the AGS synchrotron**, to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. This modification provides many advantages over the present setup of the AGS that uses two partial helical magnets. First, the symmetric placement of the four helical magnets allows for a better control of the AGS optics with reduced values of the beta functions especially near beam injection, second, the vertical spin direction during beam injection and extraction is closer to vertical, and third, it provides a larger “spin tune gap” for the placement of both the vertical and horizontal tunes of the AGS during acceleration, second. Although the same spin gap can be obtained with two partial helices of equal strength, the required strength of the two helices makes it impractical. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and comparison of these results with the present setup of the AGS that uses two partial helical magnets***.
* T. Roser et al., Proc. EPAC04, p. 1577 (2004).
** H. Huang et al., PRL 99, 154801(2007).
*** N. Tsoupas et. al., these proceedings.
 
 
WEPPR018 Beam Experiments towards High-intensity Beams in RHIC 2979
 
  • C. Montag, L. A. Ahrens, M. Blaskiewicz, J.M. Brennan, K.A. Drees, W. Fischer, T. Hayes, H. Huang, K. Mernick, G. Robert-Demolaize, K.S. Smith, R. Than, P. Thieberger, K. Yip, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Proton bunch intensities in RHIC will be increased from 2*1011 to 3*1011 protons per bunch to increase the luminosity, together with head-on beam-beam compensation using electron lenses. To study the feasibility of the intensity increase, beam experiments are being performed. Recent experimental results will be presented.
 
 
THPPD083 Analysis of Kicker Noise Induced Beam Emittance Growth 3710
 
  • W. Zhang, L. A. Ahrens, I. Blackler, M. Blaskiewicz, J.M. Brennan, W. Fischer, H. Hahn, H. Huang, N.A. Kling, M. Lafky, G.J. Marr, K. Mernick, J.-L. Mi, M.G. Minty, C. Naylor, T. Roser, J. Sandberg, T.C. Shrey, B. Van Kuik, A. Zelenski
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Over the last few years, physicists have suspected the presence of noise acting on the RHIC beams observable as occasional emittance growth at high beam energies. While the noise was sporadic in the past, it became more persistent during the run-11 setup period. An investigation diagnosed the source as originating from the RHIC abort kicker system. Once identified the issue was quickly resolved. We report in this paper the investigation result, circuit analysis, measured and simulated waveforms, solutions, and future plans.
 
 
THPPP026 Experimental Effects of Orbit on Polarization Loss in RHIC 3788
 
  • V.H. Ranjbar
    Tech-X, Boulder, Colorado, USA
  • M. Bai, H. Huang, A. Marusic, M.G. Minty, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We are performing several experiments during the RHIC ramp to better understand the impact of orbit errors on the polarization at our current working point. These will be conducted by exciting specified orbit harmonics during the final two large intrinsic resonance crossing in RHIC during the 250 GeV polarized proton ramp. The resultant polarization response will then be measured.
 
 
THPPP030 Near Integer Tune for Polarization Preservation in the AGS 3797
 
  • N. Tsoupas, L. A. Ahrens, M. Bai, K.A. Brown, J.W. Glenn, H. Huang, W.W. MacKay, T. Roser, V. Schoefer, K. Zeno
    BNL, Upton, Long Island, New York, USA
 
  Funding: *Work supported by the US Department of Energy.
The high energy (T=250 GeV) polarized proton beam experiments performed in RHIC, require high polarization of the beam. In order to preserve the polarization of the proton beam, during the acceleration in the AGS, which is the pre-injector to RHIC, two partial helical magnets* have been installed in AGS. In order to minimize the loss of the beam polarization due to the various intrinsic spin resonances occurring during the proton acceleration, we constrain the value of the vertical tune to be higher than 8.97. With the AGS running at near integer tune the perturbations caused by the partial helical magnets is large resulting in large beta and dispersion waves. To mitigate the adverse effect of the partial helices on the optics of the AGS, we have introduced compensation quads** in AGS. In this paper we present the beam optics of the AGS which ameliorates this effect of the partial helices.
* H. Huang, et al., Proc. EPAC06, p. 273, (2006).
** N. Tsoupas et al., Proc. PAC07, p. 3723 (2007).
 
 
WEEPPB004 Status of the APEX Project at LBNL 2173
 
  • F. Sannibale, B.J. Bailey, K.M. Baptiste, J.M. Byrd, C.W. Cork, J.N. Corlett, S. De Santis, L.R. Doolittle, J.A. Doyle, P. Emma, J. Feng, D. Filippetto, G. Huang, H. Huang, T.D. Kramasz, S. Kwiatkowski, W.E. Norum, H.A. Padmore, C. F. Papadopoulos, G.C. Pappas, G.J. Portmann, J. Qiang, D.G. Quintas, J.W. Staples, T. Vecchione, M. Venturini, M. Vinco, W. Wan, R.P. Wells, M.S. Zolotorev, F.A. Zucca
    LBNL, Berkeley, California, USA
  • M. J. Messerly, M.A. Prantil
    LLNL, Livermore, California, USA
  • C.M. Pogue
    NPS, Monterey, California, USA
 
  Funding: This work was supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231.
The Advanced Photo-injector Experiment (APEX) at the Lawrence Berkeley National Laboratory is focused on the development of a high-brightness high-repetition rate (MHz-class) electron injector for X-ray FEL applications. The injector is based on a new concept gun, utilizing a normal conducting 186 MHz RF cavity operating in cw mode in conjunction with high quantum efficiency photocathodes capable of delivering the required repetition rates with available laser technology. The APEX activities are staged in 3 main phases. In Phases 0 and I, the gun will be tested at its nominal energy of 750 keV and several different photocathodes are tested at full repetition rate. In Phase II, a pulsed linac will be added for accelerating the beam at several tens of MeV to reduce space charge effects and measure the high-brightness performance of the gun when integrated in an injector scheme. At Phase II energies, the radiation shielding configuration of APEX limits the repetition rate to a maximum of several Hz. Phase 0 is under commissioning, Phase I under installation, and initial activities for Phase II are underway. This paper presents an update on the status of these activities.